Question

A mass weighing 96 lb is attached to a spring hanging from the ceiling and comes to rest at its equilibrium position. At time

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Steady State solutiion Contains Pertiwla Solution Cmly becaos auiliary Solution dies steady Out and State Solution ould be 3thumbs up please

If you have any doubt regarding this particular question then please comment

Add a comment
Know the answer?
Add Answer to:
A mass weighing 96 lb is attached to a spring hanging from the ceiling and comes...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A spring is stretched by 9 in by a mass weighing 15 lb. The mass is...

    A spring is stretched by 9 in by a mass weighing 15 lb. The mass is attached to a dashpot mechanism that has a damping constant 0.35 lb-s/ft and is acted on by an external force of 9 cos(6t) lb. Determine the steady state response of this system. Use 32 ft/s² as the acceleration due to gravity. Pay close attention to the units. U(t) = ft

  • 3. A mass weighing 4 pounds is suspended from a spring whose constant is 3 lb/ft. The entire syst...

    3. A mass weighing 4 pounds is suspended from a spring whose constant is 3 lb/ft. The entire system is emersed in a fluid offering a damping force numerically equal to the instantaneous velocity. The mass is initially released from rest at a point 2 feet below the equilibrium position. An external force equal to f(t) = e-t is impressed on the system. Find the steady-state solution. 3. A mass weighing 4 pounds is suspended from a spring whose constant...

  • please find amplitude and freq of the steady state solution An 8-kg mass is attached to...

    please find amplitude and freq of the steady state solution An 8-kg mass is attached to a spring hanging from the ceiling and allowed to come to rest. Assume that the spring constant is 20 N/m and the damping constant is 2 N-sec/m. At time t= 0, an external force of 4 sin 2t cos 2t is applied to the system. Determine the amplitude and frequency of the steady-state solution.

  • A mass weighing 10 lb stretches a spring 11 in. The mass is attached to a...

    A mass weighing 10 lb stretches a spring 11 in. The mass is attached to a viscous damper with damping constant 3 lb ·s/ft. The mass is pushed upward, contracting the spring a distance of 4 in, and then set into motion with a downward velocity of 2 in/s. Determine the position u of the mass at any time t. Use 32 ft/s as the acceleration due to gravity. Pay close attention to the units. u(t) =

  • A mass weighing 11 lb stretches a spring 8 in. The mass is attached to a...

    A mass weighing 11 lb stretches a spring 8 in. The mass is attached to a viscous damper with damping constant 3 lb-s/ft. The mass is pushed upward, contracting the spring a distance of 2 in, and then set into motion with a downward velocity of 6 in/s. Determine the position u of the mass at any time t. Use 32 ft/s as the acceleration due to gravity. Pay close attention to the units. u(t) =

  • < Pre A mass weighing 18 lb stretches a spring 6 in. The mass is attached...

    < Pre A mass weighing 18 lb stretches a spring 6 in. The mass is attached to a viscous damper with damping constant 4lb-s/ft. The mass is pushed upward, contracting the spring a distance of 4 in, and then set into motion with a downward velocity of 5 in/s. Determine the position u of the mass at any time t. Use 32 ft/s” as the acceleration due to gravity. Pay close attention to the units. u(t) = in

  • 3a. [10pts) A 32 lb weight is attached to a spring whose constant is 25 lb/ft....

    3a. [10pts) A 32 lb weight is attached to a spring whose constant is 25 lb/ft. Initially the mass is released I ft below the equilibrium position with a downward velocity of 1 ft/sec. Find the equation of motion 3b. 10pts) Determine the equation of motion in part(a) if the surrounding medium offers a damping force numerically equal to 10 times the instantaneous velocity. 3c. [14pts) Determine the equation of motion in parts(a)-(b) if the weight is driven by an...

  • A mass weighing 4 pounds is attached to a spring whose constant is 2 lb/ft

    A mass weighing 4 pounds is attached to a spring whose constant is 2 lb/ft. The medium offers a damping force that is numerically equal to the instantaneous velocity. The mass is initially released from a point 1 foot above the equilibrium position with a downward velocity of 16 ft/s. (g = 32 ft/s2) a. Find the equation of motion. b. What type of motion is this? c. Determine the time at which the mass passes through the equilibrium position.

  • An object weighing 16 lb streches a spring 3 in. The object is attached to a...

    An object weighing 16 lb streches a spring 3 in. The object is attached to a viscous damper with a damping constant of 2 lb-s/ft. If the object is set in motion from its equilibrium position by pulling it downward an additional 1 inch, find the position of the object at any time t.

  • A mass weighing 32 pounds is attached to the lower end of a coil spring. It...

    A mass weighing 32 pounds is attached to the lower end of a coil spring. It stretches the spring by 1 foot and comes to rest at equilibrium position. At time t = 0, the mass is pulled downward 1 foot, and released. Suppose the damping is equivalent to 8x' pounds and no external forces are present. Find the displacement of the mass at time t, and write your final answer in phase-amplitude form.

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT