Question

We want to design a spherical vacuum capacitor, formed by an inner spherical conductor with radius b
and an outer spherical shell of given radius a.We want to design a spherical vacuum capacitor, formed by an inner spherical conductor with radius b and an outer spherical shell of given radius a. We want the capacitor to be able to store the greatest amount of electrical energy subject to the constraint that the electric field strength at the surface of the inner sphere may not exceed Eo- What radius b should be chosen for the inner spherical conductor and how much energy can be stored? For convenience, choose b=ka, with k-constant

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Solution and a chde on the te she, Shell ab a-b -the ennsyto b this capacitor 1 L (a a \ab aC eneisy in the capactos ull depe

Add a comment
Know the answer?
Add Answer to:
We want to design a spherical vacuum capacitor, formed by an inner spherical conductor with radius...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A spherical capacitor is formed from two concentric, spherical conducting shells separated by a vacuum.

    A spherical capacitor is formed from two concentric, spherical conducting shells separated by a vacuum. The inner sphere has a radius of 15.0 cm and the capacitance of the device is 116 pF.  a) What is the radius of the outer sphere?  b) If the potential difference between the two spheres is 220 V, how much energy is stored in this capacitor?

  • A capacitor is formed from two concentric spherical conducting shells separated by vacuum. The inner sphere...

    A capacitor is formed from two concentric spherical conducting shells separated by vacuum. The inner sphere has radius 12.0 cm , and the outer sphere has radius 16.0 cm . A potential difference of 150 V is applied to the capacitor. a) What is the energy density at r= 12.1 cm , just outside the inner sphere? b)What is the energy density at r = 15.9 cm , just inside the outer sphere?

  • A capacitor is formed from two concentric spherical conducting shells separated by vacuum. The inner sphere...

    A capacitor is formed from two concentric spherical conducting shells separated by vacuum. The inner sphere has radius 10.5 cm , and the outer sphere has radius 15.5 cm . A potential difference of 110 V is applied to the capacitor. What is the energy density at r= 10.6 cm , just outside the inner sphere? What is the energy density at r = 15.4 cm , just inside the outer sphere?

  • A spherical capacitor is formed from two concentric spherical conducting shells separated by vacuum. The inner...

    A spherical capacitor is formed from two concentric spherical conducting shells separated by vacuum. The inner sphere has a radius of ra = 12.4 cm , and the outer sphere has a radius of rb = 14.9 cm . A voltage of 120 V is applied to the capacitor. a) What is the capacitance of the capacitor? Use ϵ0 = 8.85×10−12 F/m for the permittivity of free space b) What is the magnitude E1 of the electric field E⃗  at radius...

  • A spherical capacitor is formed from two concentric spherical conducting shells separated by a vacuum. The...

    A spherical capacitor is formed from two concentric spherical conducting shells separated by a vacuum. The inner sphere has a radius of rarar_a = 12.0 cm, and the outer sphere has a radius of rbrbr_b = 14.8 cm. A potential difference of 120 VV is applied to the capacitor. a. What is the capacitance of the capacitor? Use ϵ0ϵ0epsilon_0 = 8.85×10−12 F/mF/m for the permittivity of free space. b. What is the magnitude E1 of the electric field E at...

  • A spherical capacitor has a spherical inner plate with radius a and outer plate with radius...

    A spherical capacitor has a spherical inner plate with radius a and outer plate with radius b. The charge on the inner plate is +Q and on the outer plate it is -Q. We have filled a cone shaped region of angle θ (0 ≤ θ ≤ π) with a dielectric with constant κ. The dielectric fills the entire volume between the two spheres inside the cone. You may neglect any fringing effects between the dielectric and the vacuum (dielectric...

  • A spherical capacitor contains a solid spherical conductor of radius 1 mm, surrounded by a dielectric...

    A spherical capacitor contains a solid spherical conductor of radius 1 mm, surrounded by a dielectric material with &r 2.0 out to a radius of 2 mm, then an outer thin spherical conducting shell. Determine the capacitance of the spherical capacitor. (Hint: Suppose you place a charge Q on the inner conductor and a charge -0 on the outer conductor Determine the electric field in the dielectric region between the conductors, then integrate SE .dr to determine the vollage difference...

  • A spherical capacitor has inner radius a and outer radius b

    A spherical capacitor has inner radius a and outer radius b, and is filled with an inhomogeneous dielectric with . Show that the capacitance of the capacitor is by assuming. (a) Q0 at the inner sphere and -Q0 at the outer sphere. (b) V0 at the inner sphere and 0 at the outer sphere.

  • A cylindrical capacitor has an inner conductor of radius 1.5 mm andan outer conductor of radius...

    A cylindrical capacitor has an inner conductor of radius 1.5 mm andan outer conductor of radius 3.4 mm.The two conductors are separated by vacuum, and the entirecapacitor is 3.0 m long. (a) What is the capacitance per unit length? F/m (b) The potential of the inner conductor is 350 mV higher than thatof the outer conductor. Find the charge (magnitude and sign) onboth conductors. inner conductor C outer conductor C

  • A cylindrical capacitor has an inner conductor of radius 2.9 mm and an outer conductor of...

    A cylindrical capacitor has an inner conductor of radius 2.9 mm and an outer conductor of radius3.6 mm . The two conductors are separated by vacuum, and the entire capacitor is 2.8 m long. Part A What is the capacitance per unit length? C/L =   pF/m   Part B The potential of the inner conductor relative to that of the outer conductor is 380 mV . Find the charge (magnitude and sign) on the inner conductor. Express your answer with the...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT