Question

A 85 kg person, which tan be treated at a point ma

0 0
Add a comment Improve this question Transcribed image text
Answer #1

迂2= 385 kg ,m2. 38S

Add a comment
Know the answer?
Add Answer to:
A 85 kg person, which tan be treated at a point maw. 11 initially located at...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A child pushes her friend (m = 25 kg) located at a radius r = 1.5...

    A child pushes her friend (m = 25 kg) located at a radius r = 1.5 m on a merry-go-round (rmgr = 2.0 m, Imgr = 1000 kg*m2) with a constant force F = 90 N applied tangentially to the edge of the merry-go-round (i.e., the force is perpendicular to the radius). The merry-go-round resists spinning with a frictional force of f = 10 N acting at a radius of 1 m and a frictional torque τ = 15 N*m...

  • 6. (25 points) The following question examines the motion of two children on a merry-go- round. You may treat the child...

    6. (25 points) The following question examines the motion of two children on a merry-go- round. You may treat the children as point particles with mass m and the merry-go-round as a disk with mass M and radius R. The moment of inertia of a disk is Idisk MR2 0wn o r Ve n e r (a) Calculate the total energy of the system if the two children are at the edge of the merry- go-round and the merry-go-round is...

  • A person sits on a frictionless stool that is free to rotate but is initially at...

    A person sits on a frictionless stool that is free to rotate but is initially at rest. The person is holding a bicycle wheel (I = 3 kg*m2) that is rotating at 8 rev/s in the clockwise direction as viewed from above, and the moment of inertia of the person-wheel-stool system is 9 kg*m2. For this problem, all answers involving a rotational component will be expressed in revolutions rather than radians. 1. What is direction of the angular momentum of...

  • A 70 kg merry-go-round disk has a radius of 3 meters and spins at 1.4 radians/sec...

    A 70 kg merry-go-round disk has a radius of 3 meters and spins at 1.4 radians/sec with the 80 kg person on the edge. If the person moves so that they are now only 1 meter from the center, calculate the new angular speed of the merry-go-round system. Calculate the total kinetic energy of the system when the person is at the edge and when the person is at the 1 meter spot.

  • A person of mass 77 kg stands at the center of a rotating merry-go-round platform of...

    A person of mass 77 kg stands at the center of a rotating merry-go-round platform of radius 2.8 mand moment of inertia 840 kg⋅m2 . The platform rotates without friction with angular velocity 0.95 rad/s . The person walks radially to the edge of the platform. Calculate the rotational kinetic energy of the system of platform plus person before and after the person's walk.

  • A person of mass 70 kg stands at the center of a rotating merry-go-round platform of...

    A person of mass 70 kg stands at the center of a rotating merry-go-round platform of radius 3.4 m and moment of inertia 940 kg⋅m2 . The platform rotates without friction with angular velocity 1.6 rad/s . The person walks radially to the edge of the platform. Calculate the angular velocity when the person reaches the edge. In rad/sec Calculate the rotational kinetic energy of the system of platform plus person before and after the person's walk. In J.

  • A person of mass 80 kg stands at the center of a rotating merry go round...

    A person of mass 80 kg stands at the center of a rotating merry go round platform of radius 2.8m and moment of inertia 870kg ×m^2. the platform rotates without friction with angular velocity .95 rad/s. the person walks radially to the edge of the platform. calculate the rotational kinetic energy of the system of platform plus person before and after the persons walk

  • A boy of mass 35.2 kg is standing on the edge of a merry-go-round which is at rest.

    A boy of mass 35.2 kg is standing on the edge of a merry-go-round which is at rest. The merry-go-round is a flat disk of mass 59.3 kg and radius 2.3m (the moment of inertia of a cylinder is ½ mr^2 ), turning on a frictionless pivot. The boy starts to walk around the edge of the merry-go-round in the clock-wise direction (when viewed from the top). When the boy is moving at 2.4 m/s relative to the merry-go-round: a....

  • 4. Cons ider the case of a rotating merry-go-round platform of mass of 310 kg and...

    4. Cons ider the case of a rotating merry-go-round platform of mass of 310 kg and radius 3.40 m. A person of mass 85 kg is standing on the outer edge of the merry-go-round platform. The merry-go- round platform with the person standing on its edge, rotates without friction about its central vertical axle with an angular speed of 2.30 rad/s. The person then jumps off the merry-go-round along a line radially outward from the central axle of the platform....

  • Problem 3: A merry-go-round can be considered a uniform disk of mass 145 kg and radius...

    Problem 3: A merry-go-round can be considered a uniform disk of mass 145 kg and radius 2.10 m free to rotate about a frictionless axis through its center. A 40.0 kg child stands at the edge and the system is initially rotating at 0.300 rad/sec. The child begins to walk around the edge of the merry-go-round with a velocity of 0.250 m/s relative to the ground in the direction of the rotation. What is the angular velocity of the merry-go-round...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT