Question

V(x) = ㆀ other iE t 72 T where En= Given the initial state 0 Ψ(x, 0) =-sin 5 L Normalize to find A, find the (allowable) eigenvalues and their corresponding probability of obtaining therm Calculate the average energy and determine the probability of finding the system at time tin the state an

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
V(x) = ㆀ other iE t 72 T where En= Given the initial state 0 Ψ(x,...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • (a) Find ψ(x, t) and P(En) at t > 0 for a particle in a one-dimensional...

    (a) Find ψ(x, t) and P(En) at t > 0 for a particle in a one-dimensional infinite potential well with walls at x = 0 and x = a, for the following initial state. ii. ψ(x, 0) = A(exp(iπ(x − a)/a) − 1) (b) If measurement of E at 5s, finds that E = 4π^2 h(bar)^ 2 /(2ma^2 ), what is ψ(x, t) at t > 5s for the initial state?

  • If an infini te square well had an initial wave function of Ψ(x, 0)-A(7Y, (x, 0)...

    If an infini te square well had an initial wave function of Ψ(x, 0)-A(7Y, (x, 0) + 4Y, (x, 0) + 2Y, (x,0)] (a) normalize it using the Dirac notations. (5 points) (b) What is Ψ(x, t) for the wave function with the initial state? (5 points)

  • (a) At time t 0, a one-dimensional bound system is in a state described by the normalized wave function V(r,0). The sys...

    (a) At time t 0, a one-dimensional bound system is in a state described by the normalized wave function V(r,0). The system has a set of orthonormal energy eigenfunctions (), 2(x),.. with corresponding eigenvalues E, E2, .... Write down the overlap rule for the probability of getting the energy E when the energy is measured at time t 0 (b) Suppose that a system is described by a normalized wave function of the form (,0) an(r), where the an are...

  • 1. A particle in an infinite square well has an initial wave function Alsin sin 4 0 < x < L other...

    help on all a), b), and c) please!! 1. A particle in an infinite square well has an initial wave function Alsin sin 4 0 < x < L otherwise s(x, t = 0) 0 (a) Find A so that the wavefunction is normalized. (b) Find '(z,t). (c) Find the expectation value(E) of the energy of ψ(x,t = 0). You may use the result mx n 2 0 1. A particle in an infinite square well has an initial wave...

  • 3. Consider a free particle on a circle. That is, consider V(z) = 0 and wave...

    3. Consider a free particle on a circle. That is, consider V(z) = 0 and wave functions Ψ(z, t) which are periodic functions of z: Ψ(z,t) = Ψ(z + L, t). a) Solve the Time-Independent Schroedinger equation. For each allowed energy, En, you will find two solutions, (s). Why does this not contradict the theorem that we proved in class about the non-degeneracy of the solutions to the TISE in one dimension? b) Start with the initial condition Ψ(z,0) sin2(nz/L)....

  • Parity (please answer from part a to part d) Consider Infinite Square Well Potential, V(x) =...

    Parity (please answer from part a to part d) Consider Infinite Square Well Potential, V(x) = 0 for |x| < 1/2a and V(x) = infinity for |x| > 1/2a a) Find energy eigenstates and eigenvalues by solving eigenvalue equation using appropriate boundary conditions. And show orthogonality of eigenstates. For rest of part b to part d please look at the image below: Problem 1 . Parity Consider an infinite square well potential, V(x) = 0 for lxl 〈 a and...

  • 3 Rockin' in the Free World Consider a free particle whose state at time t 0...

    3 Rockin' in the Free World Consider a free particle whose state at time t 0 is given by a gaussian wave packet, a2z2 V(x,0)Ae- for real constants A, a 1. Normalize V(x,0), i.e., find A. 2. Find Ψ(x, t). You can do the integral by completing the square in the exponent to get it into the form of a gaussian

  • A particle in the harmonic oscillator potential, V(x) - m2t2, is at time t 0 in...

    A particle in the harmonic oscillator potential, V(x) - m2t2, is at time t 0 in the state ψ(x, t-0) = A3ψο(x) +4ψι (2)] where vn (z) is the nth normalized eigenfunction (a) Find A so that b is normalized. (b) Find ψ(x,t) and |ψ(x, t)12 (c) Find x (t) and p)(t). what would they be if we replaced ψ1 with V2? (hint: no difficult calculations are required) Check that Ehrenfest's theorem (B&J 3.93) holds for this wavefunction. (d) What...

  • The initial wave function of a free particle is: Ψ(x,0) = A, for |x| = 0,...

    The initial wave function of a free particle is: Ψ(x,0) = A, for |x| = 0, otherwise where a and A are positive real numbers. The particle is in a zero (or constant) potential environment since it is a free particle a) Determine A from normalization. b) Determine φ(p) = Φ(p,0), the time-zero momentum representation of the particle state. What is Φ(p,t)? Sketch φ(p). Locate the global maximum and the zeros of φ(p). Give the expression for the zeros (i.e.,...

  • 3.9. A particle of mass m is confined in the potential well 0 0<x < L...

    3.9. A particle of mass m is confined in the potential well 0 0<x < L oo elsewhere (a) At time t 0, the wave function for the particle is the one given in Problem 3.3. Calculate the probability that a measurement of the energy yields the value En, one of the allowed energies for a particle in the box. What are the numerical values for the probabilities of obtaining the ground-state energy E1 and the first-excited-state energy E2? Note:...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT