Question

A 26.0-kg shell is fired from a gun with a muzzle velocity 170.0 m/s at 68.0o...

A 26.0-kg shell is fired from a gun with a muzzle velocity 170.0 m/s at 68.0o above the horizontal. At the top of the trajectory, the shell explodes into two fragments of equal mass. One fragment, whose speed immediately after the explosion is zero, falls vertically. What is the horizontal speed of the other fragment?

0 0
Add a comment Improve this question Transcribed image text
Answer #1


momentum before firing


Pix = m*V*costheta

after explosion final momentum Pfx = m/2*vx

from conservation of momentum

Pfx = Pix

m/2*vx = m*v*costheta


26/2*vx = 26*170*cos68

vx = 127.4 m/s

Add a comment
Know the answer?
Add Answer to:
A 26.0-kg shell is fired from a gun with a muzzle velocity 170.0 m/s at 68.0o...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • (hrw8c9p15) A shell is fired from a gun with a muzzle velocity of 23 m/s, at...

    (hrw8c9p15) A shell is fired from a gun with a muzzle velocity of 23 m/s, at an angle of 60° with the horizontal. At the top of the trajectory, the shell explodes into two fragments of equal mass (see the figure). One fragment, whose speed immediately after the explosion is zero, falls vertically. How far from the gun does the other fragment land, assuming that the terrain is level and that the air drag is negligible

  • A shell is shot with an initial velocity of 25 m/s, at an angle of =...

    A shell is shot with an initial velocity of 25 m/s, at an angle of = 57° with the horizontal. At the top of the trajectory, the shell explodes into two fragments of equal mass (see the figure). One fragment, whose speed immediately after the explosion is zero, falls vertically. How far from the gun does the other fragment land, assuming that the terrain is level and that air drag is negligible?

  • A shell is shot with an initial velocity 0 of 20 m/s, at an angle of ?0 = 60° with the...

    A shell is shot with an initial velocity 0 of 20 m/s, at an angle of θ0 = 60° with the horizontal. At the top of the trajectory, the shell explodes into two fragments of equal mass . One fragment,whose speed immediately after the explosion is zero, falls vertically. How far from the gun does the other fragment land, assuming that the terrain is level andthat air drag is negligible?

  • Chapter 09, Problem 013 A shell is shot with an initial velocity VO of 17 m/s,...

    Chapter 09, Problem 013 A shell is shot with an initial velocity VO of 17 m/s, at an angle of 0o 51 with the horizontal. At the top of the trajectory, the shell explodes into two fragments of equal mass (see the figure). One fragment, whose speed immediately after the explosion is zero, falls vertically. How far from the gun does the other fragment land, assuming that the terrain is level and that air drag is negligible? Exploion the

  • 6. A shell is fired from a gun with a muzzle velocity of 20.0 m's, at...

    6. A shell is fired from a gun with a muzzle velocity of 20.0 m's, at an angle of 60.0 with the horizontal. At the top of the trajectory, the shell explodes into two fragments of equal mass. One fragment, whose speed immediately after the explosion is zero, falls vertically. How far from the gun does the other fragment land, assuming that the terrain is level and that the air drag is negligible? (You may use R-(v/g) sin(20) 7. In...

  • A shell is shot with an initial velocity v Overscript right-arrow EndScripts Subscript 0 of 21...

    A shell is shot with an initial velocity v Overscript right-arrow EndScripts Subscript 0 of 21 m/s, at an angle of θ0 = 57° with the horizontal. At the top of the trajectory, the shell explodes into two fragments of equal mass (see the figure). One fragment, whose speed immediately after the explosion is zero, falls vertically. How far from the gun does the other fragment land, assuming that the terrain is level and that air drag is negligible?

  • A 212-kg projectile, fired with a speed of 133 m/s at a 63.0 angle, breaks into...

    A 212-kg projectile, fired with a speed of 133 m/s at a 63.0 angle, breaks into three pieces of equal mass at the highest point of its arc (where its velocity is horizontal). Two of the fragments move with the same speed right after the explosion as the entire projectile had just before the explosion; one of these moves vertically downward and the other horizontally Part A Determine the magnitude of the velocity of the third fragment immediately after the...

  • Question 10 A 224-kg projectile, fired with a speed of 72 m/s at a 60° angle,...

    Question 10 A 224-kg projectile, fired with a speed of 72 m/s at a 60° angle, breaks into three pieces of equal mass at the highest point of its arc (where its velocity is horizontal). Two of the fragments move with the same speed right after the explosion as the entire projectile had just before the explosion; one of these moves vertically downward and the other horizontally Determine the velocity, as a Cartesian vector, of the third fragment immediately after...

  • 25% 2. A 7 kg shell moving with a velocity ve = (600 m/s) k explodes...

    25% 2. A 7 kg shell moving with a velocity ve = (600 m/s) k explodes at Point C into two fragments A, and B of mass, 4 kg and 3 kg, respectively. Knowing that the fragments land at the coordinates A(-4,3,1) and B(3, -4, -2), determine the speed of each fragment immediately after the explosion. Assume that elevation changes due to gravity may be neglected. y+ Al43,) -4m B(3-1,2) -3m Clo,0,6) 6 m.

  • Question 10: A 224-kg projectile, fired with a speed of {variables.Q10_V} m/s at a 60° angle,...

    Question 10: A 224-kg projectile, fired with a speed of {variables.Q10_V} m/s at a 60° angle, breaks into three pieces of equal mass at the highest point of its arc (where its velocity is horizontal). Two of the fragments move with the same speed right after the explosion as the entire projectile had just before the explosion; one of these moves vertically downward and the other horizontally. The values for variables.Q10_V will be defined within the question and are unique...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT