Question

Suppose an object is launched from Earth with 0.56 times the kinetic energy for escape. How...

Suppose an object is launched from Earth with 0.56 times the kinetic energy for escape. How many multiples of Earth's radius (RE = 6.37 x 106 m) in radial distance will the object reach before falling back toward Earth? The distances are measured relative to Earth's center, so a ratio of 1.00 would correspond to an object on Earth's surface. For this problem, neglect Earth's rotation and the effect of its atmosphere.

For reference, Earth's mass is 5.972 x 1024 kg.

Your answer is a ratio and thus unitless. Enter only a number in the answer box.

0 0
Add a comment Improve this question Transcribed image text
Answer #1

2 Launchk.E- しよ R En (iMm CM - Mm- R:2.27 んww

Add a comment
Know the answer?
Add Answer to:
Suppose an object is launched from Earth with 0.56 times the kinetic energy for escape. How...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Suppose an object is launched from Earth with 0.52 times the escape speed. How many multiples of Earth's radius (RE 6.37 x 106 m) in radial distance will the object reach before falling back towa...

    Suppose an object is launched from Earth with 0.52 times the escape speed. How many multiples of Earth's radius (RE 6.37 x 106 m) in radial distance will the object reach before falling back toward Earth? The distances are measured relative to Earth's center, so a ratio of 1.00 would correspond to an object on Earth's surface. For this problem, neglect Earth's rotation and the effect of its atmosphere For reference, Earth's mass is 5.972 x1024 kg. Your answer is...

  • A projectile is shot directly away from Earth's surface. Neglect the rotation of the Earth. What...

    A projectile is shot directly away from Earth's surface. Neglect the rotation of the Earth. What multiple of Earth's radius RE gives the radial distance (from the Earth's center) the projectile reaches if (a) its initial speed is 0.437 of the escape speed from Earth and (b) its initial kinetic energy is 0.437 of the kinetic energy required to escape Earth? (Give your answers as unitless numbers.)

  • A projectile is shot directly away from Earth's surface. Neglect the rotation of the Earth. What...

    A projectile is shot directly away from Earth's surface. Neglect the rotation of the Earth. What multiple of Earth's radius RE gives the radial distance (from the Earth's center) the projectile reaches if a) its initial speed is 0.365 of the escape speed from Earth and b) its initial kinetic energy is 0.365 of the kinetic energy required to escape Earth? (Give your answers as unitless numbers.) c) What is the least initial mechanical energy required at launch if the...

  • A projectile is shot directly away from Earth's surface. Neglect the rotation of the Earth. What...

    A projectile is shot directly away from Earth's surface. Neglect the rotation of the Earth. What multiple of Earth's radius RE gives the radial distance (from the Earth's center) the projectile reaches if (a) its initial speed is 0.662 of the escape speed from Earth and (b) its initial kinetic energy is 0.662 of the kinetic energy required to escape Earth? (Give your answers as unitless numbers.) (c) What is the least initial mechanical energy required at launch if the...

  • 1. An 8000 kg satellite is launched from the surface of the Earth into outer space....

    1. An 8000 kg satellite is launched from the surface of the Earth into outer space. What initial speed is needed by the satellite in order to reach a great (i.e., infinite) distance from the Earth, neglecting the effects of air resistance in the atmosphere? (G = 6.67 × 10−11 N·m2/kg2, ME = 5.97 × 1024 kg, RE = 6.37 × 106 m.) A)9,200 m/s. B)18,900 m/s. C)11,180 m/s. D)25,200 m/s. E)8,450 m/s.

  • 17. If an object is launched from the Earth at two thirds of its escape velocity,...

    17. If an object is launched from the Earth at two thirds of its escape velocity, what is the maximum height above the surface which the projectile reaches? A. 2.18 x 106 m B. 1.91 x 107 m C. 1.27 x 106 m D. 1.15 × 107 m E. 5.10 x 106 m 18. Consider a parachutist with their chute open descending from a plane. His terminal velocity is vy. Suddenly, the chute develops a hole reduces the coefficient of...

  • 1.  A rocket is launched vertically from the Earth, and the thrust (pushing force) from the engines...

    1.  A rocket is launched vertically from the Earth, and the thrust (pushing force) from the engines is directed upward, and has a magnitude of 5.00 x 106 N. The mass of the rocket is initially 2.00 x 105 kg. (a)   What is the initial acceleration of the rocket, assuming you can neglect air resistance? (b)   After the rocket has been in flight for a while, burning and exhausting a lot of fuel, its mass has decreased to 1.20 x 105 kg, and...

  • 4. Use Kepler's Second Law and the fact that L-fxp to determine at which points in...

    4. Use Kepler's Second Law and the fact that L-fxp to determine at which points in an elliptical orbit around the Sun a planet has maximum and minimum speeds. (Section 13.5 will help.) 5. At the end of example 13.10, there's an "Evaluate" blurb about how inside the surface of the Earth the force of gravity varies proportionally to the distance from the center, and it makes reference to the next chapter. which is about oscillation. Model the motion of...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT