Question

2. A continuous random variable has joint pdf f(x, y): xy 0 x 1, 0sys 2 f(x, y) otherwise 0 a) Find c b) Find P(X Y 1) b) Fin

0 0
Add a comment Improve this question Transcribed image text
Answer #1

a)

212 y 2 1 ca .2 da 6 f (x, y)dydax dydx Ca 0 0

2c3 2x dar 3 2c 1 2cz _ 3 3

For a valid pdf above must be equal to 1 so

2c 1 3 3

c

c=1

b)

y dr f (x, y)dydx y + 1-X) P(X+Y 1) P(Y _ 6 1-r 1-r )2 dr x(1 20 2x+ 2(1 6

1 83 + 3 54 3a2 0.9028 6 2

c)

The marginal pdf of X is

212 2 2r 2a2 3 (r)= f(x, y)dy 6

The marginal pdf of Yis

y 2 y f (x, y)dx + ιω- 3 6 6 3 Ο Η Α

d)

Since

F(x, yf(f(y)

So X and Y are not independent.

e)

The expected value of X is

1 1 2x2 dr [2.x 4 223 13 E(X) xf (x)dx 18 4 9

The expected value of Y is

E(Y)=\int_{0}^{2}yf(y)dy=\int_{0}^{2}\left [ \frac{y}{3}+\frac{y^{2}}{6} \right ]dx=\left [ \frac{y^{2}}{6}+\frac{y^{3}}{18} \right ]_{0}^{2}=\frac{10}{9}

The expected value of XY is

y y 312 1 1 2 2 3 2 ryf(a, y)dydx E(XY) da 9 0 dydx 2 0 0

=\int_{0}^{1}\left [ \frac{4x^{3}}{2}+\frac{8x^{2}}{9} \right ]dx=\left [ \frac{x^{4}}{2}+\frac{8x^{3}}{27} \right ]_{0}^{1}=\frac{43}{54}

The co-variance is

Cov(X,Y)=E(XY)-E(X)E(Y)=\frac{43}{54}-\frac{10}{9}\cdot \frac{13}{18}=-\frac{1}{162}

---------------------------------------------

The expected value of X^2 is

E(X^{2})=\int_{0}^{1}x^{2}f(x)dx=\int_{0}^{1}\left [ 2x^{4}+\frac{2x^{3}}{3} \right ]dx=\left [ \frac{2x^{5}}{5}+\frac{2x^{4}}{12} \right ]_{0}^{1}=\frac{17}{30}

The expected value of Y is

E(Y^{2})=\int_{0}^{2}y^{2}f(y)dy=\int_{0}^{2}\left [ \frac{y^{2}}{3}+\frac{y^{3}}{6} \right ]dx=\left [ \frac{y^{3}}{9}+\frac{y^{4}}{24} \right ]_{0}^{2}=\frac{14}{9}

The variance of X is

Var(X)=E(X^{2})-[E(X)]^{2}=\frac{17}{30}-\left (\frac{13}{18} \right )^{2}=\frac{73}{1620}

The variance of X is

Var(Y)=E(Y^{2})-[E(Y)]^{2}=\frac{14}{9}-\left (\frac{10}{9} \right )^{2}=\frac{26}{81}

The correlation coefficient is

Corr(X,Y)=\frac{Cov(X,Y)}{\sqrt{Var(X)Var(Y)}}=\frac{-1/162}{\sqrt{(73/1620)(26/81)}}=-0.05133

(e)

The conditional pdf of Y given X is

f_{Y|X}(y|x)=\frac{x^{2}+\frac{xy}{3}}{2 x^{2}+\frac{2x}{3}}=\frac{3x^{2}+xy}{6x^{2}+2x}

Hence,

f_{Y|X}(y|x)=\frac{3x^{2}+xy}{6x^{2}+2x},0\leq x\leq 1,0\leq y\leq 2

------------------------------------

The conditional pdf of X given Y is

f_{X|Y}(x|y)=\frac{x^{2}+\frac{xy}{3}}{\frac{1}{3}+\frac{y}{6}}=\frac{6x^{2}+2xy}{2+y}

Hence,

f_{X|Y}(x|y)=\frac{6x^{2}+2xy}{2+y},0\leq x\leq 1,0\leq y\leq 2

Add a comment
Know the answer?
Add Answer to:
2. A continuous random variable has joint pdf f(x, y): xy 0 x 1, 0sys 2...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT