Question

A block of material insulator is 2d thick and oriented so that its faces they are...

A block of material
insulator is 2d thick and oriented so that its faces
they are parallel to the yz plane and given by the x = d and x = -d planes. The
dimensions y and z of the block are very large compared to d and
They can be considered essentially infinite. The block has a density
of uniform positive charge r. a) Explain why the electric field
due to the block it is equal to zero in the center of the block (x = 0).
b) Based on Gauss's law, find the electric field due
to the block (magnitude and direction) at all points of space.

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
A block of material insulator is 2d thick and oriented so that its faces they are...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A slab of insulating material has thickness 2d and is oriented so that its faces are...

    A slab of insulating material has thickness 2d and is oriented so that its faces are parallel to the yz-plane and given by the planes x=d and x=?d. The y- and z-dimensions of the slab are very large compared to d and may be treated as essentially infinite. Let the charge density of the slab be given by ?(x)=?0(x/d)2 where ?0 is a positive constant. Part B Using Gauss's law, find the magnitude of the electric field due to the...

  • QUESTION 7 A slab of insulating material has thickness 2d, with d = 1.98 cm, and...

    QUESTION 7 A slab of insulating material has thickness 2d, with d = 1.98 cm, and is oriented so that its faces are parallel to the yz-plane and given by the planes x = 1.98 cm and x = -1.98 cm. The y- and z-dimensions of the slab are very large compared to d and may be treated as essentially infinite. The slab has a uniform positive charge density ρ = 1.65 μC/m3. Using Gauss’s law, find the magnitude of...

  • Two uniformly charged, infinite, nonconducting planes are parallel to a yz plane and positioned at x--43...

    Two uniformly charged, infinite, nonconducting planes are parallel to a yz plane and positioned at x--43 cm and x- +43 cm. The charge densities on the planes are -46 nC/m2 and +16 nC/m2, respectively. What is the magnitude of the potential difference between the origin and the point on the x axis at x = +77 cm? (Hint: Use Gauss' law for planar symmetry to determine the electric field in each region of space.) Number TT3.01e3 Units the tolerance is...

  • Three very large parallel non-conducting planes (infinte planes) have surface charge densities of sigma,-sigma a and...

    Three very large parallel non-conducting planes (infinte planes) have surface charge densities of sigma,-sigma a and -3sigma (sigma > 0). Planes are distance d apart from each other. The origin of the coordinate system was set on the first plane as shown in the figure. Planes are perpendicular to z axis. Point A is 1/2 d away from the origin while point B and P are 2 d and 4 d away from the origin respectively. a) Use Gauss's law,...

  • Problem 4 (20 points): An infinite sheet of charge (i.e. infinite in the y- and z-...

    Problem 4 (20 points): An infinite sheet of charge (i.e. infinite in the y- and z- directions) with thickness 2d lies in the 12-plane between x =-d and x = +d. An edge view (ie, cross-section) of this thick, planar sheet of charge is shown in the figure. This particular insulating sheet has a non-uniform volume charge density p (C/m') that varies as a function ofx, given by p(x)-Pn(x1), where Pols a positive constant. a) Can Gauss's Law be used...

  • An electric flux produced by a point charge q though sphere of radius r is фо(E)....

    An electric flux produced by a point charge q though sphere of radius r is фо(E). Describe how this flux would change in the following cases: a) The charge is triplet. 6. b) The volume of the sphere is doubled. c) The surface is changed to a cube with side of length / and the charge placed on the center. d) The charge is moved away from the center, but still inside the cube. e) The charge is outside the...

  • (10 points) a) Two through the box? charges Qi and Q2 are inside a closed cubical...

    (10 points) a) Two through the box? charges Qi and Q2 are inside a closed cubical box of side a. What is the net outward flux iv. (Qi + Q)/(4a) b) As two positive charges are brought closer together i. the repulsive force between them will decrease in magnitude ii. the repulsive force between them will increase in magnitude ii. the attractive force between them wil decrease in magnitude iv. the attractive force between them will increase in magnitude v....

  • Consider a cylindrical capacitor like that shown in Fig. 24.6. Let d = rb − ra...

    Consider a cylindrical capacitor like that shown in Fig. 24.6. Let d = rb − ra be the spacing between the inner and outer conductors. (a) Let the radii of the two conductors be only slightly different, so that d << ra. Show that the result derived in Example 24.4 (Section 24.1) for the capacitance of a cylindrical capacitor then reduces to Eq. (24.2), the equation for the capacitance of a parallel-plate capacitor, with A being the surface area of...

  • summarizr the followung info and write them in your own words and break them into different...

    summarizr the followung info and write them in your own words and break them into different key points.   6.5 Metering Chamber: 6.5.1 The minimum size of the metering box is governed by the metering area required to obtain a representative test area for the specimen (see 7.2) and for maintenance of reasonable test accuracy. For example, for specimens incorporating air spaces or stud spaces, the metering area shall span an integral number of spaces (see 5.5). The depth of...

  • summatize the following info and break them into differeng key points. write them in yojr own...

    summatize the following info and break them into differeng key points. write them in yojr own words   apartus 6.1 Introduction—The design of a successful hot box appa- ratus is influenced by many factors. Before beginning the design of an apparatus meeting this standard, the designer shall review the discussion on the limitations and accuracy, Section 13, discussions of the energy flows in a hot box, Annex A2, the metering box wall loss flow, Annex A3, and flanking loss, Annex...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT