Question

A typical human lens has an index of refraction of 1.430. The lens has a double...

A typical human lens has an index of refraction of 1.430. The lens has a double convex shape, but its curvature can be varied by the ciliary muscles acting around its rim. At minimum power, the radius of the front of the lens is 10.0 mm, whereas that of the back is 6.00 mm. At maximum power, the radii are 6.50mm and 5.5mm, respectively. If the lens were in air:

What would be the maximum power and associated focal length of the lens?

What would be the minimum power and associated focal length of the lens?

At maximum power, how far behind the lens would the lens form an image of an object 11.5 cm in front of the front surface of the lens? (Image distance behind the lens)

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
A typical human lens has an index of refraction of 1.430. The lens has a double...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A typical human lens has an index of refraction of 1.430. The lens has a double...

    A typical human lens has an index of refraction of 1.430. The lens has a double convex shape, but its curvature can be varied by the ciliary muscles acting around its rim. At minimum power, the radius of the front of the lens is 10.0 mm, whereas that of the back is 6.00 mm. At maximum power, the radii are 6.50 mm and 5.50 mm, respectively. If the lens were in air, what would be the maximum power and associated...

  • A typical human lens has an index of refraction of 1.41. The lens has a double convex shape, but ...

    A typical human lens has an index of refraction of 1.41. The lens has a double convex shape, but its curvature can be varied by the ciliary muscles acting around its rim. At minimum power, the radius of the front of the lens is 10.0 cm, while that of the back is 6.00 mm. At maximum power the radii are 6.00 mm and 5.50 mm, respectively. (The numbers can vary somewhat.) If the lens were in air, (a) what would...

  • The crystalline lens of the human eye is a double-convex lens made of material having an...

    The crystalline lens of the human eye is a double-convex lens made of material having an index of refraction of 1.44 (although this varies). Its focal length in air is about 8.00 mm , which also varies. We shall assume that the radii of curvature of its two surfaces have the same magnitude. (Note: The results obtained in the parts A, B and C are not strictly accurate, because the lens is embedded in fluids having refractive indexes different from...

  • An object placed 20 cm in front of a lens results in an image being formed...

    An object placed 20 cm in front of a lens results in an image being formed 24 cm behind the lens. Each surface of the lens is convex (bulging away from the optical plane) with the same radius of curvature, and the index of refraction of the glass composing the lens is Tiens =1.4. What is the radius of curvature of either side of this lens (to the nearest tenth of a cm)? Note, once again, the focal length of...

  • A lens is made from glass with an index of refraction of 1.66 for violet light...

    A lens is made from glass with an index of refraction of 1.66 for violet light and 1.61 for red light. Both sides of the lens are convex with equal radii of curvature. For which color, violet or red, is the focal length larger? Explain how you know.

  • A thin plastic lens with index of refraction n = 1.71 has radii of curvature given...

    A thin plastic lens with index of refraction n = 1.71 has radii of curvature given by Ri = -11.5 cm and R2 = 35.0 cm. HINT (a) Determine the focal length in cm of the lens. cm (b) Determine whether the lens is converging or diverging. converging ОО diverging Determine the image distances in cm for object distances of infinity, 7.00 cm, and 70.0 cm. (c) infinity cm (d) 7.00 cm cm (e) 70.0 cm cm

  • Problem 1. A concave-convex lens with index of refraction n = 3/2, radii of curvature R1...

    Problem 1. A concave-convex lens with index of refraction n = 3/2, radii of curvature R1 = ?3cm and R2 = 1cm is 4cm to the left of a diverging lens having focal length ?2cm. An object is placed to the left of both lenses at a distance 7 cm from the concave-convex lens. (a) Where is the final image formed by this combination of lenses? (b) Is the final image upright or inverted? (c) Is the final image real...

  • A thin plastic lens with index of refraction n = 1.66 has radii of curvature given...

    A thin plastic lens with index of refraction n = 1.66 has radii of curvature given by R, - -11.5 cm and R- 35.0 cm. HINT (a) Determine the focal length in cm of the lens. cm (b) Determine whether the lens is converging or diverging. O converging O diverging Determine the image distances in cm for object distances of infinity, 3.00 cm, and 30.0 cm. (c) Infinity cm (d) 3.00 cm cm (e) 30.0 cm cm Need Help? Read...

  • The thick lens shown at right is made from glass with index of refraction 1.50. The...

    The thick lens shown at right is made from glass with index of refraction 1.50. The thick lens has thickness of 6.0 cm and radii of curvature of 8.00 cm and 10.00 cm. (a) Find the focal length of this thick lens in air and the position of its focal points (F and F) and its principal points (H, and H,) with respect to the front and back of the lens respectively. (b) Draw a sketch showing the locations of...

  • 1) A single bi-convex lens (a lens with two convex surfaces) made of fused quartz (index...

    1) A single bi-convex lens (a lens with two convex surfaces) made of fused quartz (index of refraction n = 1.46) has surfaces with radii of curvature r1 = 17.0 cm and r2 = -17.0 cm. What is the focal length of the lens in air? Tries 0/12 2) If an object is placed at p = 36.4 cm from the lens, where is the image? (Use plus sign for a real image, and minus sign for a virtual image.)...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT