Question

Two masses are hanging from the ends of a 1m bar. Where is the balance point...

Two masses are hanging from the ends of a 1m bar. Where is the balance point of the system? m1 is 1 kg, m2 is 3 kg

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Xcm = (m1x1 + m2x2)/(m1+m2)

= 1(0) + 3(1) /(3+1) = 0.75 m

= 75 cm

The mass 1 kg is at the left most end and the 3kg mass is the right most end.

Answer is 75 cm.

Add a comment
Know the answer?
Add Answer to:
Two masses are hanging from the ends of a 1m bar. Where is the balance point...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • The Atwood machine consists of two masses hanging from the ends of a rope that passes...

    The Atwood machine consists of two masses hanging from the ends of a rope that passes over a pulley. Assume that the rope and pulley are massless, and that there is no friction in the pulley. If the masses have the values m1 = 20.3 kg and m2 = 12.5 kg, find the magnitude of their acceleration a and the tension T in the rope. Use g = 9.81 m/s2. 2 answers in the rope. Use g 9.81 m/s Number...

  • The Atwood machine consists of two masses hanging from the ends of a rope that passes...

    The Atwood machine consists of two masses hanging from the ends of a rope that passes over a pulley Assume that the rope and pulley are massless, and that there is no friction in the pulley. If the masses have the values m 19.7 kg and m2 12.7 kg, find the magnitude of their acceleration a and the tension T in the rope. Use g 9.81 m/s2. Number a- m/s Number

  • The Atwood machine consists of two masses hanging from the ends of a rope that passes...

    The Atwood machine consists of two masses hanging from the ends of a rope that passes over a pulley. The pulley can be approximated by a uniform disk with mass mp=6.33 kg and radius rp=0.250 m. The hanging masses are mL=21.1 kg and mR=14.1 kg.Calculate the magnitude of the masses' acceleration a and the tension in the left and right ends of the rope, TL and TR , respectively.

  • The Atwood machine consists of two masses hanging from the ends of a rope that passes...

    The Atwood machine consists of two masses hanging from the ends of a rope that passes over a pulley. The pulley can be approximated by a uniform disk with mass m = 4.53 kg and radius r = 0.450 m. The hanging masses are mu = 20.5 kg and mr = 12.7 kg. Calculate the magnitude of the masses' acceleration a and the tension in the left and right ends of the rope, T, and Tr, respectively. mi m/s2 TL...

  • The Atwood machine consists of two masses hanging from the ends of a rope that passes...

    The Atwood machine consists of two masses hanging from the ends of a rope that passes over a pulley. The pulley can be approximated by a uniform disk with mass mp = 5.13 kg and radius rp = 0.250 m. The hanging masses are mı = 19.7 kg and mr = 11.7 kg. Calculate the magnitude of the masses' acceleration a and the tension in the left and right ends of the rope, Ti, and TR respectively. my m/s2 N...

  • The Atwood machine consists of two masses hanging from the ends of a rope that passes...

    The Atwood machine consists of two masses hanging from the ends of a rope that passes over a pulley. The pulley can be approximated by a uniform disk with mass m, = 5.53 kg and radius rp = 0.150 m. The hanging masses are m = 17.1 kg and mp = 12.1 kg. Calculate the magnitude of the masses' acceleration a and the tension in the left and right ends of the rope, T and Tr, respectively. m m/s2 a...

  • The Atwood machine consists of two masses hanging from the ends of a rope that passes...

    The Atwood machine consists of two masses hanging from the ends of a rope that passes over a pulley. The pulley can be approximated by a uniform disk with mass mp = 5.13 kg and radius rp = 0.250 m. The hanging masses are mu = 19.7 kg and mr = 11.7 kg. Calculate the magnitude of the masses' acceleration a and the tension in the left and right ends of the rope, T. and Tr , respectively. mu a=...

  • The Atwood machine consists of two masses hanging from the ends of a rope that passes...

    The Atwood machine consists of two masses hanging from the ends of a rope that passes over a pulley. The pulley can be approximated by a uniform disk with mass m = 5.13 kg and radius rp = 0.350 m. The hanging masses are m. = 19.7 kg and mx = 13.3 kg. Calculate the magnitude of the masses' acceleration a and the tension in the left and right ends of the rope, Ti, and Tr, respectively. mL m/s2 a...

  • The Atwood machine consists of two masses hanging from the ends of a rope that passes...

    The Atwood machine consists of two masses hanging from the ends of a rope that passes over a pulley. The pulley can be approximated by a uniform disk with mass mp = 6.13 kg and radius rp = 0.150 m. The hanging masses are mL = 21.1 kg and mR = 10.3 kg. Calculate the magnitude of the masses' acceleration a and the tension in the left and right ends of the rope, Ti and TR, respectively. m "L a=...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT