Question

A 1kg particle is in a region where the potential energy can be represented by the...

A 1kg particle is in a region where the potential energy can be represented by the function U(x) = x 2 − 5, where using x in meters will give you U in J. The particle is released from rest at x = 2.0m.

(a)In which direction does it move? Why?

(b)What is its velocity when it has moved 2m?

(c)Where does the particle first come to rest after you release it?

(d)Describe the long-term motion of the particle.

0 0
Add a comment Improve this question Transcribed image text
Answer #1

here i am supposing. U(x) as X sqaure

If any doubt please comment if you like my solution hit the like button

Add a comment
Know the answer?
Add Answer to:
A 1kg particle is in a region where the potential energy can be represented by the...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A particle moves and has a potential energy that can be described by the equation U(x)...

    A particle moves and has a potential energy that can be described by the equation U(x) = 4 sin(2 x) where U(x) is in J. The total energy of the particle is E_tot = 2 J. Make a well-labelled graph of U(x)vs. x from x = 0 to x = pi. Draw a line corresponding to E_tot on your diagram. Assume the particle is moving in the positive x direction. Where is the particle speeding up? Make sure you solve...

  • 5. Consider a particle moving in the region x>0 under the influence of the potential U(x)...

    5. Consider a particle moving in the region x>0 under the influence of the potential U(x) = C (a/x + x/a), where C=1J, and a=2m. (a) Find the equilibrium positions and determine whether they are stable or unstable. (b) Find U at those equilibrium positions. (c) Sketch U(x) without using a computer (explain how you get the sketch) and discuss the motion of the particle in details in all the different regions if its total energy E1 = 2 J,...

  • A particle enters a region where the potential in joules is given by U(x) = 2x3...

    A particle enters a region where the potential in joules is given by U(x) = 2x3 + 2x2 where x is in meters. What is the x-component of the force felt by the particle if it is at x = 2 m? O 32N o -32 N 0-24N O 24N

  • The figure below shows a plot of potential energy U versus position x of a 1.04...

    The figure below shows a plot of potential energy U versus position x of a 1.04 kg particle that can travel only along an x axis. (Nonconservative forces are not involved.) In the graphs, the potential energies are U1 = 15 J, U2 = 30 J, and U3 = 40 J. The figure below shows a plot of potential energy U versus position x of a 1.04 kg particle that can travel only along an x axis. (Nonconservative forces are...

  • A particle is introduced to a region with a potential described by U(x)--2x2 +x*+1 Joules. 3. a. ...

    A particle is introduced to a region with a potential described by U(x)--2x2 +x*+1 Joules. 3. a. (2 pts) In software, plot the potential U) Set your axis ranges: -2 SxS2 and 0s b. (5 pts) Find the equilibrium positions and determine whether they are stable or c. (8 pts) Describe the motion of the particle for total energy values E-О.0.05. 1.0, 2.0 unstable. Explain how you arrived at your answers. (all in Joules). What I am looking for here...

  • 1. A particle is released from rest at the point x = x, in the potential...

    1. A particle is released from rest at the point x = x, in the potential field U(x) = 4 B where a and B are constants. Find (i) the equilibrium position of the particle (ii) its maximum velocity.

  • The figure shows a plot of potential energy U versus position x of a 0.280 kg particle that can t...

    The figure shows a plot of potential energy U versus position x of a 0.280 kg particle that can travel only along an x axis under the influence of a conservative force. The graph has these values: UA = 9.00 J, UC = 20.0 J and UD = 24.0 J. The particle is released at the point where U forms a “potential hill” of “height” UB = 12.0 J, with kinetic energy 5.00 J. What is the speed of the...

  • Find the law of motion of a particle mass m and zero energy in one dimension...

    Find the law of motion of a particle mass m and zero energy in one dimension in the field U(x) = -Ax^(4) where A is a positive constant. Given the inital position x0, compute how much time does it take for the particle to escape to infinity if the vector of initial velocity of the particle is pointing away from the origin x=0. Describe the motion when the vector of inital velocity of the particle is pointing toward x=0. 3....

  • Answers can be more than one: VII. (12pts) Consider the following potential energy: region 1: U(X)...

    Answers can be more than one: VII. (12pts) Consider the following potential energy: region 1: U(X) = U. x < 0 region 2: U(X) = 0 0<x</ Uo region 3: U(x) = U. x>L ТЕ where U. >0. We want to consider a particle with energy E such that 0 < E<Uo. There are two possible forms for the wave function that might be used to represent the particle: (x) = 4 sin kyx+ B, coskx v(x) = 4e** +...

  • A particle of mass m moves in one dimension. Its potential energy is given by U(x)...

    A particle of mass m moves in one dimension. Its potential energy is given by U(x) = -Voe-22/22 where U, and a are constants. (a) Draw an energy diagram showing the potential energy U(). Choose some value for the total mechanical energy E such that -U, < E < 0. Mark the kinetic energy, the potential energy and the total energy for the particle at some point of your choosing. (b) Find the force on the particle as a function...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT