Question

A 18.0 g copper ring at 0.000°C has an inner diameter of D = 2.54000 cm....

A 18.0 g copper ring at 0.000°C has an inner diameter of D = 2.54000 cm. An aluminum sphere at 106.0°C has a diameter of d = 2.54508 cm. The sphere is placed on top of the ring, and the two are allowed to come to thermal equilibrium, with no heat lost to the surroundings. The sphere just passes through the ring at the equilibrium temperature. What is the mass of the sphere?

Copper expansion = 17 * 10^-6

Aluminum = 24*10^-6

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
A 18.0 g copper ring at 0.000°C has an inner diameter of D = 2.54000 cm....
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A 21.0 g copper ring at 0°C has an inner diameter of D = 2.50458 cm....

    A 21.0 g copper ring at 0°C has an inner diameter of D = 2.50458 cm. A hollow aluminum sphere at 91.0°C has a diameter of d = 2.50922 cm. The sphere is placed on top of the ring (see the figure), and the two are allowed to come to thermal equilibrium, with no heat lost to the surroundings. The sphere just passes through the ring at the equilibrium temperature. What is the mass of the sphere? The linear expansion...

  • A 30.0 g copper ring at 0°C has an inner diameter of D = 3.51884 cm....

    A 30.0 g copper ring at 0°C has an inner diameter of D = 3.51884 cm. A hollow aluminum sphere at 87.0°C has a diameter of d = 3.52526 cm. The sphere is placed on top of the ring (see the figure), and the two are allowed to come to thermal equilibrium, with no heat lost to the surroundings. The sphere just passes through the ring at the equilibrium temperature. What is the mass of the sphere? The linear expansion...

  • A 15.0 g copper ring at 0°C has an inner diameter of D = 3.61231 cm....

    A 15.0 g copper ring at 0°C has an inner diameter of D = 3.61231 cm. A hollow aluminum sphere at 93.0°C has a diameter of d 3.61852 cm. The sphere is placed on top of the ring (see the figure), and the two are allowed to come to thermal equilibrium, with no heat lost to the surroundings. The sphere just passes through the ring at the equilibrium temperature. What is the mass of the sphere? The linear expansion coefficient...

  • Question 8 Your answer is partially correct. Try again. A 22.0 g copper ring at 0°C...

    Question 8 Your answer is partially correct. Try again. A 22.0 g copper ring at 0°C has an inner diameter of D = 3.71225 cm. A hollow aluminum sphere at 95.0°C has a diameter of d = 3.72008 cm. The sphere is placed on top of the ring (see the figure), and the two are allowed to come to thermal equilibrium, with no heat lost to the surroundings. The sphere just passes through the ring at the equilibrium temperature, what...

  • A ring made from aluminum has an inner radius of 2.50000 cm and an outer radius...

    A ring made from aluminum has an inner radius of 2.50000 cm and an outer radius of 3.50000 cm, giving the ring a thickness of 1.00000 cm. The thermal expansion coefficient of aluminum is 23.0 ⨯ 10-6/°C. If the temperature of the ring is increased from 20.0°C to 90.0°C, by how much does the thickness of the ring change?

  • OAsk Your Teacher 2. +1/3 polnts | Previous Answers SF6 10.P.015 My Notes A brass ring of diameter 10 cm at 18.0°C is heated and slipped over an aluminum rod with a diameter of 10.01 cm at 18.0°C. As...

    OAsk Your Teacher 2. +1/3 polnts | Previous Answers SF6 10.P.015 My Notes A brass ring of diameter 10 cm at 18.0°C is heated and slipped over an aluminum rod with a diameter of 10.01 cm at 18.0°C. Assume that the average coefficients of linear expansion are constant (a) To what temperature must this combination be cooled to separate them? PC Is this temperature attainable? yes no (b) If the aluminum rod were 10.03 cm in diameter, what would be...

  • At 20∘C, the hole in an aluminum ring is 2.700 cm in diameter. You need to...

    At 20∘C, the hole in an aluminum ring is 2.700 cm in diameter. You need to slip this ring over a steel shaft that has a room-temperature diameter of 2.707 cm . To what common temperature should the ring and the shaft be heated so that the ring will just fit onto the shaft? Coefficients of linear thermal expansion of steel and aluminum are 12×10−6 K−1 and 23×10−6 K−1 respectively.

  • At 20∘C, the hole in an aluminum ring is 2.300 cm in diameter. You need to...

    At 20∘C, the hole in an aluminum ring is 2.300 cm in diameter. You need to slip this ring over a steel shaft that has a room-temperature diameter of 2.306 cm .To what common temperature should the ring and the shaft be heated so that the ring will just fit onto the shaft? Coefficients of linear thermal expansion of steel and aluminum are 12×10−6 K−1 and 23×10−6 K−1 respectively.

  • A hot lump of 27.4 g of copper at an initial temperature of 70.3 °C is...

    A hot lump of 27.4 g of copper at an initial temperature of 70.3 °C is placed in 50.0 mL of H2O initially at 25.0 °C and allowed to reach thermal equilibrium. What is the final temperature of the copper and water given that the specific heat of copper is 0.385 J/(g·°C)? Assume no heat is lost to surroundings.

  • A hot lump of 30.9 g of copper at an initial temperature of 97.4 °C is...

    A hot lump of 30.9 g of copper at an initial temperature of 97.4 °C is placed in 50.0 mL of H2O initially at 25.0 °C and allowed to reach thermal equilibrium. What is the final temperature of the copper and water given that the specific heat of copper is 0.385 J/(g·°C)? Assume no heat is lost to surroundings.

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT