Question

A 60.0-kg skateboarder starts out with a speed of 2.18 m/s. He does 104 J of...

A 60.0-kg skateboarder starts out with a speed of 2.18 m/s. He does 104 J of work on himself by pushing with his feet against the ground. In addition, friction does -215 J of work on him. In both cases, the forces doing the work are non-conservative. The final speed of the skateboarder is 6.70 m/s. (a) Calculate the change (PEf - PE0) in the gravitational potential energy. (b) How much has the vertical height of the skater changed? Give the absolute value.

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
A 60.0-kg skateboarder starts out with a speed of 2.18 m/s. He does 104 J of...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A 61.2-kg skateboarder starts out with a speed of 2.26 m/s. He does 107 J of...

    A 61.2-kg skateboarder starts out with a speed of 2.26 m/s. He does 107 J of work on himself by pushing with his feet against the ground. In addition, friction does -258 J of work on him. In both cases, the forces doing the work are non-conservative. The final speed of the skateboarder is 5.65 m/s. (a) Calculate the change (PEf - PE0) in the gravitational potential energy. (b) How much has the vertical height of the skater changed? Give...

  • A 60.7-kg skateboarder starts out with a speed of 2.41 m/s. He does 99.2 J of...

    A 60.7-kg skateboarder starts out with a speed of 2.41 m/s. He does 99.2 J of work on himself by pushing with his feet against the ground. In addition, friction does -212 J of work on him. In both cases, the forces doing the work are non-conservative. The final speed of the skateboarder is 8.11 m/s. (a) Calculate the change (PEf - PE0) in the gravitational potential energy. (b) How much has the vertical height of the skater changed? Give...

  • A 54.6-kg skateboarder starts out with a speed of 1.65 m/s. He does 118 J of...

    A 54.6-kg skateboarder starts out with a speed of 1.65 m/s. He does 118 J of work on himself by pushing with his feet against the ground. In addition, friction does -269 J of work on him. In both cases, the forces doing the work are non-conservative. The final speed of the skateboarder is 7.00 m/s. (a) Calculate the change (PEf - PE0) in the gravitational potential energy. (b) How much has the vertical height of the skater changed? Give...

  • 54.0-kg skateboarder starts out with a speed of 2.38 m/s. He does 105 J of work...

    54.0-kg skateboarder starts out with a speed of 2.38 m/s. He does 105 J of work on himself by pushing with his feet against the ground. In addition, friction does -230 J of work on him. In both cases, the forces doing the work are non-conservative. The final speed of the skateboarder is 8.53 m/s. (a) Calculate the change (PEf - PE0) in the gravitational potential energy. (b) How much has the vertical height of the skater changed? Give the...

  • A 57.4-kg skateboarder starts out with a speed of 2.20 m/s. He does 113 J of...

    A 57.4-kg skateboarder starts out with a speed of 2.20 m/s. He does 113 J of work on himself by pushing with his feet against the ground. In addition, friction does -224 J of work on him. In both cases, the forces doing the work are non-conservative. The final speed of the skateboarder is 8.70 m/s. Calculate the change (PEf - PE0) in the gravitational potential energy.

  • A skateboarder starts up a 1.0-m-high, 30∘ ramp at a speed of 8.6 m/s . The...

    A skateboarder starts up a 1.0-m-high, 30∘ ramp at a speed of 8.6 m/s . The skateboard wheels roll without friction. At the top, she leaves the ramp and sails through the air. Part A How far from the end of the ramp does the skateboarder touch down? Express your answer to two significant figures and include the appropriate units.

  • A skateboarder starts up a 1.0-m-high, 30° ramp at a speed of 7.7 m/s. The skateboard...

    A skateboarder starts up a 1.0-m-high, 30° ramp at a speed of 7.7 m/s. The skateboard wheels roll without friction. At the top, she leaves the ramp and sails through the air. How far from the end of the ramp does the skateboarder touch down? Express your answer to two significant figures and include the appropriate units | Value Units に

  • Coasting along at 7.00 m/s, a 60.0 kg bicyclist on a 6.70 kg bicycle encounters a...

    Coasting along at 7.00 m/s, a 60.0 kg bicyclist on a 6.70 kg bicycle encounters a small hill. If the speed of the bicyclist is 6.00 m/s at the top of the hill, find the work done by the net force on the bicyclist and her bike? (answer in J if possible thank you)

  • A 68 kg swimmer does 510 J of work and gets up to a speed of...

    A 68 kg swimmer does 510 J of work and gets up to a speed of 2.8 m/s from rest. Compute the non-conservative work done on the swimmer by the water.

  • A 60.0-kg skier with an initial speed of 12.0 m/s coasts up a 2.50-m high rise...

    A 60.0-kg skier with an initial speed of 12.0 m/s coasts up a 2.50-m high rise as shown. You can assume she starts exactly at the bottom of the rise, and the coefficient of friction between her skis and all surfaces is 0.80. (a) Find the work done by friction during the climb. (b) Find her final speed at the top. (c) Find the distance she travels along the top horizontal surface before she comes to rest.

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT