Question

A uniform disk of radius 0.2 m and mass m = 16 kg is mounted on...

A uniform disk of radius 0.2 m and mass m = 16 kg is mounted on a nearly frictionless axle. A string is wrapped tightly around the disk and pulled with a constant force of F = 1 N. After a while the disk has reached an angular speed of ω0 = 2.3 rad/s. What is its angular speed 1.5 s later?

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Since the force is constant, so the torque due to this force will also be constant.

So, when the torque is constant that means the angular acceleration will also be constant.

So, moment of inertia of the disk

I=0.5mr2

I=0.5*16*0.22

I=0.32 kg.m2

Now that torque is,

T=F.r

=1*0.2

=0.2 N-m

Also we know that,

Torque= (Moment of inertia)*(Angular acceleration)

So,

Angular acceleration=0.2/0.32

=0.625

Now applying first equation of angular motion,

=2.3+(0.625*1.5)

=3.2375 rad/sec

Add a comment
Know the answer?
Add Answer to:
A uniform disk of radius 0.2 m and mass m = 16 kg is mounted on...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Problem: A pulley, consists of a disk of radius R=0.2 m and mass M= 50 kg...

    Problem: A pulley, consists of a disk of radius R=0.2 m and mass M= 50 kg is mounted on a nearly frictionless axle. A string is wrapped lightly around the pulley, and you pull on the string with a constant force, F = 100 N. If the pulley starts from rest, what is the angular speed at a time At = 1 s later? Assume that the string does not slip on the pulley. Note: Moment of inertia of a...

  • A uniform disc with mass M and radius R = 0.10 m is mounted on a...

    A uniform disc with mass M and radius R = 0.10 m is mounted on a frictionless, horizontal axle, as shown in the figure. The light cord wrapped around the disk is pulled so that it has a constant tension of T = 20.0 N. Starting from the rest, the disk performs a rotational motion with a constant angular acceleration a = 2 rad/s2 Find mass M of the disk. (Note that the moment of inertia of the disk is...

  • A wheel with radius 0.4m is mounted on an axle and is free to rotate. Beginning...

    A wheel with radius 0.4m is mounted on an axle and is free to rotate. Beginning with the wheel at rest, a string wrapped around the edge of the wheel, is pulled with a force of 20 N . While the string is unwinding the wheel rotates through an angle of 10 rad . If the angular speed of the wheel after the string is pulled is 4 rad/s , what is the moment of inertia of the wheel?

  • A string is wrapped around a uniform disk of mass M = 2.2 kg and radius R = 0.1 m. (Recall that the moment of inertia of a uniform disk is (1/2) MR2.)

    A string is wrapped around a uniform disk of mass M = 2.2 kg and radius R = 0.1 m. (Recall that the moment of inertia of a uniform disk is (1/2) MR2.) Attached to the disk are four low-mass rods of radius b = 0.13 m, each with a small mass m = 0.7 kg at the end. The device is initially at rest on a nearly frictionless surface. Then you pull the string with a constant force F...

  • A string is wrapped around a disk of mass m = 1.8 kg and radius R...

    A string is wrapped around a disk of mass m = 1.8 kg and radius R = 0.10 m. Starting from rest, you pull the string with a constant force F = 7 N along a nearly frictionless surface. At the instant when the center of the disk has moved a distance x = 0.14 m, your hand has moved a distance of d = 0.33 m. Two pucks, one pulled from the center, the other by a string wrapped...

  • 011 10.0 points A uniform disk of radius 0.31 m is mounted on a frictionless, horizontal...

    011 10.0 points A uniform disk of radius 0.31 m is mounted on a frictionless, horizontal axis. A light cord wrapped around the disk supports a 1.5 kg object, as shown. When released from rest the object falls with a downward acceleration of 4.6 m/s?. MacBook Air r

  • A cord s wrapped around the rim of a solid uniform wheel 0.22 m in radius and of mass 8.60 kg

    A cord s wrapped around the rim of a solid uniform wheel 0.22 m in radius and of mass 8.60 kg . A steady horizontal pull of 50.0 N to the right is exerted on the cord, pulling it off tangentially from the wheel. The wheel is mounted on frictionless bearings on a horizontal axle through its center. Part A Compute the angular acceleration of the wheelPart B Compute the angular acceleration of the part of the cord that has already been pulled...

  • A rod of length L and negligible mass is attached to a uniform disk of mass M and radius R (see figure below).

    A rod of length L and negligible mass is attached to a uniform disk of mass M and radius R (see figure below). A string is wrapped around the disk, and you pull on the string with a constant force F. Two small balls each of mass m slide along the rod with negligible friction. The apparatus starts from rest, and when the center of the disk has moved a distance d, a length of strings has come off the...

  • A thin light string is wrapped around a solid uniform disk of mass M and radius...

    A thin light string is wrapped around a solid uniform disk of mass M and radius R, mounted as shown. The loose end of the string is attached to the axle of a solid uniform disc of mass m and the same radius r which is can roll down without slipping down an inclined plane that makes angle θ with the horizontal. Find the acceleration a of the rolling disc. Neglect friction in the axle of the pulley. a =...

  • A Texas cockroach of mass 0.17 kg runs counterclockwise around the rim of a lazy Susan...

    A Texas cockroach of mass 0.17 kg runs counterclockwise around the rim of a lazy Susan (a circular disk mounted on a vertical axle) that has radius 15 cm, rotational inertia 4.9 ✕ 10−3 kg · m2, and frictionless bearings. The cockroach's speed (relative to the ground) is 2.0 m/s, and the lazy Susan turns clockwise with angular speed ω0 = 2.9 rad/s. The cockroach finds a bread crumb on the rim and, of course, stops. (a) What is the...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT