Question

a student accidentally switches the set of KSCN and Fe(NO3)3/HNO3 solutions between part 1 and part...

a student accidentally switches the set of KSCN and Fe(NO3)3/HNO3 solutions between part 1 and part 2 so that there is excess of Iron(III) in Part II (equilibrium solutions) instead of in Part I (standard solutions). Will his standard curve equation describe accurately the relation between the absorbance and the colored complex? Will the equilibrium constants be reliable? Rationalize your answers.

0 0
Add a comment Improve this question Transcribed image text
Answer #1

The reaction is

Fe+3 (aq) + SCN- (aq) = Fe(SCN)+2 (aq)

If there is excess Fe(NO3)3, then some of Fe+3 remains unreacted in the equilibrium but complex formation happens. We measure the absorbance and concentration of the complex in the solution. There is no change in the standard curve equation.

Equilibrium constant = [Fe(SCN)+2 ]/ [Fe+3 ] *[SCN- ]

The equilibrium constant is reliable as it is the ratio of product concentration and reactant concentration.

Add a comment
Know the answer?
Add Answer to:
a student accidentally switches the set of KSCN and Fe(NO3)3/HNO3 solutions between part 1 and part...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • 5.0 mL of 0.0020 M Fe(NO3)3 was mixed with 3.0 mL of 0.0020 M KSCN and...

    5.0 mL of 0.0020 M Fe(NO3)3 was mixed with 3.0 mL of 0.0020 M KSCN and 2.0 mL of. The absorbance of this solution at 447 nm was measured as 0.35. A calibration curve was created using four standard solutions of Fe(SCN)2+. The equation for the best-fit line of [FeSCN2+] vs Abs was y = 5025x + 0.004. Using the data provided, calculate an equilibrium constant (Kc) for the formation of [Fe(SCN)2+]. For the above reaction, how were we able...

  • 3. Experimental Procedure, Part A.1. For preparing a set of standard solutions of FeNCS, the equilibrium...

    3. Experimental Procedure, Part A.1. For preparing a set of standard solutions of FeNCS, the equilibrium molar con- centration of FeNCS is assumed to equal the initial molar concentration of the SCN in the reaction mixture. Why is this assumption valid? A. A Set of Standard Solutions to Establish a The set of standard solutions is used to determine the absorbance of known molar con- centrations of FeNCS2. A plot of the data, known as a calibration curve, is used...

  • Table A. Preparation of Standard solutions of FeSCN2+ 1.0 M HNO3 0.002 M 0.200 M Solution...

    Table A. Preparation of Standard solutions of FeSCN2+ 1.0 M HNO3 0.002 M 0.200 M Solution KSCN (mL) Fe(NO3)3 (mL) 0.5 5 [FeSCN2+] (mol/L)* 1 4.0x10^-5 Add 1.0 M 2 1.0 5 8.0x10^-5 HNO3 3 1.5 5 1.2x10^-10 4 2.0 5 1.6x10-4 to each to adjust the volume to 25 mL. 5 2.5 5 2.0x10-4 * Calculate the concentrations of FeSCN2+ in each beaker, assuming that all SCN-ions exist as FeSCN2+. In other words, [FeSCN2+] (in Soln 1) = [SCN-]...

  • Calculate the initial concentration of iron(III) in solution #1, #2, #3. Beaker (mL) Table 1. Reagent...

    Calculate the initial concentration of iron(III) in solution #1, #2, #3. Beaker (mL) Table 1. Reagent Solutions Provided by the Stockroom Solution Name Reagent [Reagent] (M) Volume (mL) Standard iron Fe(NO3)3 2.50 x 10 in 0.10 M HNO3 nitric acid HNO3 0.10 120 35 50 250 conc. SCN KSCN 0.50 30 50 dilute SCN KSCN 2.50 x 10-3 30 50 Worksheet 1 #1 5.00 #2 10.00 #3 15.00 Dilute iron (mL) [Fe**] (M) [Fe(SCN)?*] (M) %T 480 58.9 35.8 21.5...

  • A student mixed 4.00 mL of 1.02 x 10-1 M Fe(O3)3 with 100.0 mL of 1.98...

    A student mixed 4.00 mL of 1.02 x 10-1 M Fe(O3)3 with 100.0 mL of 1.98 x 10-4 M KSCN using 5.0 x 10-1 M HNO3 as the solvent for both solutions and found the absorbance of the resulting equilibrium mixture to be 0.235. Given these data, calculate the K value (The e value for Fe(SCN)2+ is 4700 L mole-1cm-1 and b = 1 cm) I got: [Fe^3+] = 3.87 x 10^-3 M [SCN^-] = 1.40 x 10^-4 M [Fe(SCN)^2+]...

  • Part I. Prepare and Test Standard Solutions 1. Obtain and wear goggles. 2. Label four small...

    Part I. Prepare and Test Standard Solutions 1. Obtain and wear goggles. 2. Label four small beakers 1-4. Obtain small volumes of 0.200 M Fe(NO3)3, 0.0020 M SCN-, and distilled water. Prepare four solutions according to the chart below Use graduated cylinders to measure the solutions. Mix each solution thoroughly Measure and record the temperature of either of the solutions - remember that the equilibrium constant (Kea) depends on temperature. Don't cross-contaminate the solutions. Technical note 1: The Fe(NO3)3 solutions...

  • Can't figure out the concentration of the complex of solns. 10, 11, 12, 13, & 14. Modern...

    Can't figure out the concentration of the complex of solns. 10, 11, 12, 13, & 14. Modern Experimental Chemistry Chemistry 153 The Iron(III) Thiocyanate Complex Purpose of the Experiment To determine the chemical formula of a complex ion and measure its formation equilibrium constant Equipment Spectro Vis spectrophotometer and LabQuest, cuvette, 25-mL buret (3), ring stand, buret clamp (2), 50-mL beaker (3), small plastic beakers Reagents SCN, as KSCN, 0.00200 M solution Fe; as Fe(NO), 0.00200 M solution and a...

  • I had clearer images. Part 1 - Making Standard solutions. 1. Into a clean, dry beaker...

    I had clearer images. Part 1 - Making Standard solutions. 1. Into a clean, dry beaker combine the solutions from the table for each calibration solution using the appropriate pipettes. Pour the contents of the beaker into a provided cuvettes (do not fill the cuvettes to the top). Pour any excess from the sample beaker into a waste beaker, rinse the sample beaker, and continue making solutions until you have the blank and four solutions for the calibration. Calibration Solution...

  • Determine the equilibrium concentration of FeSCN2+ in each solution. (Page below are the initial concentrations of...

    Determine the equilibrium concentration of FeSCN2+ in each solution. (Page below are the initial concentrations of FE3+ and scn- for each solution ) Secondly, use stoichiometry to determine equilibrium FE3+ and SCN -. ( concentration used for FE and KSCN are both 0.002M ) the absorbance of each standard in the same test tube used to blank the spectrophoto standards from least to most concentrated, rinsing with a small amount of the next sta tilling the test tube. Record absorbance...

  • 1. A student mixes 5.00 mL of 2.00 x 10 M Fe(NO3)3 with 5.0 mL of...

    1. A student mixes 5.00 mL of 2.00 x 10 M Fe(NO3)3 with 5.0 mL of 2.00 x 10-3 M KSCN. She finds that in the equilibrium mixture the concentration of FeSCN+2 is 1.2 x 104 M. Find the Kc for the reaction of Fe (aq) + SCN (aq) → FeSCN2(aq) using the following steps. a. Find the initial concentration of Fe and SCN. (Use Equation 4). Record the value in the ICE Chart below. b. What is the equilibrium...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT