Question

A pipe of length 2.98 m is open at both ends. When the wind blows, the...

A pipe of length 2.98 m is open at both ends. When the wind blows, the pipe resonates. If the air's temperature is 22.5°C, what is the frequency (in Hz) of the first overtone of this pipe?

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
A pipe of length 2.98 m is open at both ends. When the wind blows, the...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A pipe of length 0.847 m is open at both ends. When the wind blows, the...

    A pipe of length 0.847 m is open at both ends. When the wind blows, the pipe resonates. If the air's temperature is 4.49°C, what is the frequency (in Hz) of the second overtone of this pipe? How would the frequency you found in the previous question change if the temperature of the air was raised by several degrees?

  • A pipe of length 0.819 m is open at both ends. When the wind blows, the...

    A pipe of length 0.819 m is open at both ends. When the wind blows, the pipe resonates. If the air's temperature is -2.77.0°C, what is the frequency (in Hz) of the second overtone of this pipe? How would the frequency you found in the previous question change if the temperature of the air was raised by several degrees?

  • (a) What length of pipe open at both ends has a fundamental frequency of 3.75 102...

    (a) What length of pipe open at both ends has a fundamental frequency of 3.75 102 Hz? Find the first overtone. lpipe = .457 Incorrect: m fovertone = 750 Correct: Hz (b) If the one end of this pipe is now closed, what is the new fundamental frequency? Find the first overtone. ffundamental = 750 Incorrect: Hz fovertone = 615 Incorrect: Hz (c) If the pipe is open at one end only, how many harmonics are possible in the normal...

  • SOLUTION (A) Find the frequencies if the pipe is open at both ends. _V 343 m/s...

    SOLUTION (A) Find the frequencies if the pipe is open at both ends. _V 343 m/s Substitute into whole harmonics equation, with n = 1. 11-222(2.46 m) = 69.7 Hz Multiply to find the second and third harmonics. 12 - 27 - 139 Hz 13 = 3f7 - 209 Hz (B) How many harmonics lle between 20 Hz and 20000 Hz for this pipe? 343 m/s Set the frequency in the harmonics equation equal to 2.00 x 104 Hz and...

  • What should be the length of an organ pipe, open at both ends, if the fundamental...

    What should be the length of an organ pipe, open at both ends, if the fundamental frequency is to be 264.8 Hz? Assume the initial temperature is 20 degree C. What is the fundamental frequency of the organ pipe of part (a) if the temperature drops to 0.0 degree C?

  • Pipe A is open at both ends and has length LA. Pipe B is closed at...

    Pipe A is open at both ends and has length LA. Pipe B is closed at one end and open at the other and has length LB. When both pipes produce sound in their second overtones, the result is a beat frequency of 2.5 Hz.    a. Make a careful sketch of the standing wave pattern for the air displacement for each pipe. Next to each sketch write the wavelength for each pipe in terms of the pipe lengths LA...

  • Pipe A is open at both ends and has length LA. Pipe B is closed at...

    Pipe A is open at both ends and has length LA. Pipe B is closed at one end and open at the other and has length LB. When both pipes produce sound in their second overtones, the result is a beat frequency of 2.5 Hz. a. Make a careful sketch of the standing wave pattern for the air displacement for each pipe. Next to each sketch, write the wavelength for each pipe in terms of the pipe lengths LA and...

  • A pipe of length L is open at both ends. By blowing air across one end...

    A pipe of length L is open at both ends. By blowing air across one end of the pipe, standing waves can be formed in the pipe. Which of the following statements are true? It is possible for half a wavelength to fill the length of the pipe The highest resonant frequency is called the fundamental The middle of the pipe can never be a node or an antinode When the pipe resonates, air molecules move back and forth perpendicular...

  • An open organ pipe (i.e., a pipe open at both ends) of length L has a...

    An open organ pipe (i.e., a pipe open at both ends) of length L has a fundamental frequency f. If the organ pipe is cut in half, what is the new fundamental frequency?

  • A pipe has the length of 0.694 m and is open at both ends. Take the...

    A pipe has the length of 0.694 m and is open at both ends. Take the speed of the sound to be V=343 m/s. a) Calculate the two lowest harmonics of the pipe (in Hz). (Enter your answer from smallest to larges)t. b) Calculate the two lowest harmonics (in Hz) after one end of the pipe is closed.(Enter your answers from smallest to largest).

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT