Question

For a first-order reaction, the half-life is constant. It depends only on the rate constant k...

For a first-order reaction, the half-life is constant. It depends only on the rate constant k and not on the reactant concentration. It is expressed as t 1/2 = 0.693 k For a second-order reaction, the half-life depends on the rate constant and the concentration of the reactant and so is expressed as t 1/2 = 1 k[A ] 0 Part A A certain first-order reaction ( A→products ) has a rate constant of 9.90×10−3 s −1 at 45 ∘ C . How many minutes does it take for the concentration of the reactant, [A] , to drop to 6.25 % of the original concentration? Express your answer with the appropriate units. View Available Hint(s) nothing nothing Submit Part B A certain second-order reaction ( B→products ) has a rate constant of 1.35×10−3 M −1 ⋅ s −1 at 27 ∘ C and an initial half-life of 240 s . What is the concentration of the reactant B after one half-life? Express your answer with the appropriate units. View Available Hint(s) nothing nothing Submit Provide Feedback Next

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
For a first-order reaction, the half-life is constant. It depends only on the rate constant k...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • For a first-order reaction, the half-life is constant. It depends only on the rate constant k...

    For a first-order reaction, the half-life is constant. It depends only on the rate constant k and not on the reactant concentration. It is expressed as 0.693 - 1/2K For a second-order reaction, the half-life depends on the rate constant and the concentration of the reactant and so is expressed as 1/2 k(Alo Part A A certain first-order reaction (A>products) has a rate constant of 9.60x10 s-1 at45 C. How many minutes does it take for the concentration of the...

  • For a first-order reaction, the half-life is constant. It depends only on the rate constant k...

    For a first-order reaction, the half-life is constant. It depends only on the rate constant k k and not on the reactant concentration. It is expressed as t1/2=0.693k t 1 / 2 = 0.693 k For a second-order reaction, the half-life depends on the rate constant and the concentration of the reactant and so is expressed as t1/2=1k[A]0. A certain first-order reaction (A→products A → p r o d u c t s ) has a rate constant of 9.30×10−3...

  • + Half-life for First and Second Order Reactions 11 of 11 The half-life of a reaction,...

    + Half-life for First and Second Order Reactions 11 of 11 The half-life of a reaction, t1/2, is the time it takes for the reactant concentration A to decrease by half. For example, after one half-Me the concentration falls from the initial concentration (Alo to A\o/2, after a second half-life to Alo/4 after a third half-life to A./8, and so on. on Review Constants Periodic Table 11/25 For a second-order reaction, the half-life depends on the rate constant and the...

  • The half-life of a reaction, t1/2, is the time it takes for the reactant concentration [A]...

    The half-life of a reaction, t1/2, is the time it takes for the reactant concentration [A] to decrease by half. For example, after one half-life the concentration falls from the initial concentration [A]0 to [A]0/2, after a second half-life to [A]0/4, after a third half-life to [A]0/8, and so on. on. For a first-order reaction, the half-life is constant. It depends only on the rate constant k and not on the reactant concentration. It is expressed as t1/2=0.693k For a...

  • A certain first-order reaction ( A products) has a rate constant of 5.10x10-35-1 at 45 °C....

    A certain first-order reaction ( A products) has a rate constant of 5.10x10-35-1 at 45 °C. How many minutes does it take for the concentration of the reactant, [A], to drop to 6.25% of the original concentration? Express your answer with the appropriate units. View Available Hint(s) ? HA Value O Units Submit Part B A certain second-order reaction (B>products) has a rate constant of 1.10x10-3M-1.s-1 at 27°C and an initial half-life of 212 s . What is the concentration...

  • Review | Constants | Periodic Tab Part B A certain second-order reaction (B products) has a rate constant of 2.00x...

    Review | Constants | Periodic Tab Part B A certain second-order reaction (B products) has a rate constant of 2.00x 10-3 M1.s 1 at 27 °C and an initial half-life of 226 s. What is the concentration of the reactant B after one half-life? S Express your answer with the appropriate units. View Available Hint(s) HA ?

  • Half-life equation for first-order reactions: t1/2=0.693k   where t1/2 is the half-life in seconds (s), and k...

    Half-life equation for first-order reactions: t1/2=0.693k   where t1/2 is the half-life in seconds (s), and k is the rate constant in inverse seconds (s−1). a) What is the half-life of a first-order reaction with a rate constant of 4.80×10−4  s−1? b) What is the rate constant of a first-order reaction that takes 188 seconds for the reactant concentration to drop to half of its initial value? Express your answer with the appropriate units. c)A certain first-order reaction has a rate constant...

  • The integrated rate law allows chemists to predict the reactant concentration after a certain amount of...

    The integrated rate law allows chemists to predict the reactant concentration after a certain amount of time, or the time it would take for a certain concentration to be reached. The integrated rate law for a first-order reaction is: [A]=[A]0e−kt Now say we are particularly interested in the time it would take for the concentration to become one-half of its initial value. Then we could substitute [A]02 for [A] and rearrange the equation to: t1/2=0.693k This equation calculates the time...

  • 15 of 20 A cortan first order reaction A →proc ucts) has a rate constant o...

    15 of 20 A cortan first order reaction A →proc ucts) has a rate constant o 5 70x10-3 s 1 at 45°C How many m nutes does it take for the concentration of the reactant to drop to 6 25% of the onginal concentration? A Express your answer with the appropriate units View Available Hint(s) Value Units Submit Part A certan secondorder reaction (B →products) has a rate constant of 1 75x 10-3 Ar, s-1 at 27 reactant B ater...

  • Part A The rate constant for a certain reaction is k = 7.60x10-35-?. If the initial...

    Part A The rate constant for a certain reaction is k = 7.60x10-35-?. If the initial reactant concentration was 0.950 mol L-, what will the concentration be after 5.00 minutes? Express your answer with the appropriate units. View Available Hint(s) Value Units Submit Previous Answers X Incorrect; Try Again; 5 attempts remaining Part B . If after 65.0 seconds the concentration has dropped to 1.50x10-2 A zero-order reaction has a constant rate of 4.50x10-mol L-8 mol L , what was...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT