Question

A string along which waves can travel is 2.72 m long and has a mass of...

A string along which waves can travel is 2.72 m long and has a mass of 123 g. The tension in the string is 34.2 N. What must be the frequency of traveling waves of amplitude 11.6 mm for the average power to be 62.5 W?

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
A string along which waves can travel is 2.72 m long and has a mass of...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A string along which waves can travel is 3.45 m long and has a mass of...

    A string along which waves can travel is 3.45 m long and has a mass of 245 g. The tension in the string is 37.2 N What must be the frequency of traveling waves of amplitude 7.98 mm for the average power to be 63.0 W? the tolerance is +12% Click if you would like to Show Work for this question: Open Show Work

  • Chapter 16, Problem 026 A string along which waves can travel is 3.77 m long and...

    Chapter 16, Problem 026 A string along which waves can travel is 3.77 m long and has a mass of 166 g. The tension in the string is 55.2 N. What must be the frequency of traveling waves of amplitude 9.81 mm for the average power to be 86.2 W? Ans:________Hz

  • How does the average power of a wave depend on each of the following quantities? proportional...

    How does the average power of a wave depend on each of the following quantities? proportional to the square root of: The average power of a wave on a string is proportional to the square of: The average power of a wave on a string is proportional to the square of: The average power of a wave on a string is proportional to the square root of: The average power of a wave on a string is the tension of...

  • Sinusoidal waves 5.00 cm in amplitude are to be transmitted along a string that has a...

    Sinusoidal waves 5.00 cm in amplitude are to be transmitted along a string that has a linear mass density of 4.00 x 10-2 kg/m. The source can deliver a maximum power of 305 W, and the string is under a tension of 101 N. What is the highest frequency fat which the source can operate? Hz Need Help? Read It Master it

  • A stretched string is 1.97 m long and has a mass of 20.9 g . When...

    A stretched string is 1.97 m long and has a mass of 20.9 g . When the string is oscillated at 440 Hz , which is the frequency of the standard A pitch that orchestras tune to, transverse waves with a wavelength of 16.5 cm travel along the string. Calculate the tension in the string.

  • You have a 1.99-m-long stretched string with a mass of 20.1 g. When you oscillate the...

    You have a 1.99-m-long stretched string with a mass of 20.1 g. When you oscillate the string at 440 Hz, which is the frequency of the standard A pitch that orchestras tune to, you observe transverse waves with a wavelength of 15.7 cm traveling along the string. Calculate the tension in the string. Number

  • Wave on a String A string with linear mass density 2.0 g/m is stretched along the...

    Wave on a String A string with linear mass density 2.0 g/m is stretched along the positive x-axis under a tension of 20 N. The other end of the string, at x = 0m is tied to a hook that oscillates up and down at a frequency of 100Hz with a maximum displacement from equilibrium of 1.0 mm. At t= 0s, the hook is at it's lowest point. (a) What are the wave speed and the wavelength on the string?...

  • Wave on a String A string with linear mass density 2.0 g/m is stretched along the...

    Wave on a String A string with linear mass density 2.0 g/m is stretched along the positive x-axis under a tension of 20 N. The other end of the string, at x = 0m is tied to a hook that oscillates up and down at a frequency of 100Hz with a maximum displacement from equilibrium of 1.0 mm. At t= 0s, the hook is at it's lowest point. (a) What are the wave speed and the wavelength on the string?...

  • 6. (20 pts.) A wave traveling along a string stretched along an x-axis has the form...

    6. (20 pts.) A wave traveling along a string stretched along an x-axis has the form y(x, t) = (10 mm) sin(107x – 5nt). (a) What direction is the wave traveling (to the left or right)? (d) What is the wave's frequency, wavelength and speed? (e) What is the minimum, finite length the string must have in order to have standing waves, in it, with this waveform bouncing back and forth along x? (f) If the string has that length,...

  • These two waves travel along the same string: y1 = (3.73 mm) sin(1.62πx - 350πt) y2...

    These two waves travel along the same string: y1 = (3.73 mm) sin(1.62πx - 350πt) y2 = (5.43 mm) sin(1.62πx - 350πt + 0.768πrad). What are (a) the amplitude and (b) the phase angle (relative to wave 1) of the resultant wave? (c) If a third wave of amplitude 5.18 mm is also to be sent along the string in the same direction as the first two waves, what should be its phase angle in order to maximize the amplitude...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT