Question

Based on the solutions to the Schrödinger equation for the ground state of the hydrogen atom,...

Based on the solutions to the Schrödinger equation for the ground state of the hydrogen atom, what is the probability of finding the electron within (inside) a radial distance of 2.7a0 (2.7 times the Bohr radius) of the nucleus?  

The answer is supposedly .905. Can anyone elaborate on how and why?

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
Based on the solutions to the Schrödinger equation for the ground state of the hydrogen atom,...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Consider an electron within the ls orbital of a hydrogen atom. The normalized probability of finding...

    Consider an electron within the ls orbital of a hydrogen atom. The normalized probability of finding the electron within a sphere of a radius R centered at the nucleus is given by normalized probability = [az-e * (až + 2a, R+ 2R)] where a, is the Bohr radius. For a hydrogen atom, ao = 0.529 Å. What is the probability of finding an electron within one Bohr radius of the nucleus? normalized probability: 0.323 Why is the probability of finding...

  • 2. The hydrogen atom [8 marks] The time-independent Schrödinger equation for the hydrogen atom in...

    2. The hydrogen atom [8 marks] The time-independent Schrödinger equation for the hydrogen atom in the spherical coordinate representation is where ao-top- 0.5298 10-10rn is the Bohr radius, and μ is the electon-proton reduced mass. Here, the square of the angular momentum operator L2 in the spherical coordinate representation is given by: 2 (2.2) sin θー sin θ 00 The form of the Schrödinger equation means that all energy eigenstates separate into radial and angular motion, and we can write...

  • 6. The ground state of the hydrogen atom has the form vi(r) = Ae-/a where do...

    6. The ground state of the hydrogen atom has the form vi(r) = Ae-/a where do is the Bohr radius, A is a constant and r is the radial distance of the electron from the nucleus. Find the constant A.

  • 6. The ground state of the hydrogen atom has the form (r)= Ae/a0 where ao is...

    6. The ground state of the hydrogen atom has the form (r)= Ae/a0 where ao is the Bohr radius, A is a constant and r is the radial distance of the electron from the nucleus. Find the constant A.

  • The ground-state wave function of a hydrogen atom is: where r is the distance from the...

    The ground-state wave function of a hydrogen atom is: where r is the distance from the nucleus and a0 is the Bohr radius (53 pm). Following the Born approximation, calculate the probability, i.e., |ψ|^2dr, that the electron will be found somewhere within a small sphere of radius, r0, 1.0 pm centred on the nucleus. ρν/α, Ψ1, () =- Μπαρ

  • The normalized wave function for a hydrogen atom in the 2s state is

    ( 25 marks) The normalized wave function for a hydrogen atom in the \(2 s\) state is$$ \psi_{2 s}(r)=\frac{1}{\sqrt{32 \pi a^{3}}}\left(2-\frac{r}{a}\right) e^{-r / 2 a} $$where \(a\) is the Bohr radius. (a) In the Bohr model, the distance between the electron and the nucleus in the \(n=2\) state is exactly \(4 a\). Calculate the probability that an electron in the \(2 s\) state will be found at a distance less than \(4 a\) from the nucleus. (b) At what value...

  • 1) (60 points) The ground state of the hydrogen atom: In three dimensions, the radial part...

    1) (60 points) The ground state of the hydrogen atom: In three dimensions, the radial part of the Schrodinger equation appropriate for the ground state of the hydrogen atom is given by: ke2 -ħ2 d2 (rR) = E(rR) 2me dr2 where R(r) is a function of r. Here, since we have no angular momentum in the ground state the angular-momentum quantum number /=0. (a) Show that the function R(r) = Ae-Br satisfies the radial Schrodinger equation, and determine the values...

  • Compare and contrast the solutions to the Schrödinger wave equation for the Hydrogen atom problem with...

    Compare and contrast the solutions to the Schrödinger wave equation for the Hydrogen atom problem with the Bohr model. What is the same about the two descriptions? What is different about the solutions?

  • An electron in a hydrogen atom is in the n -3, 2, m-2 state. For this state, the normalized radia...

    An electron in a hydrogen atom is in the n -3, 2, m-2 state. For this state, the normalized radial wave function and normalized spherical harmonics are Rs2(r)42 sin2 θ e_2іф . (a) Calculate the probability of finding the electron within 30 of the zy-plane, irre- spective of the distance r from the nucleus. irrespective of direction between r 3ao and r-9a0. (b) Calculate the probability of finding the electron between r (c) Calculate the probability of finding the electron...

  • Solve the following problems HW9. Show that the time-independent Schrödinger equation is given by P(x)/(x) =...

    Solve the following problems HW9. Show that the time-independent Schrödinger equation is given by P(x)/(x) = Eve from the traveling wave equation and the wave function (x./)=v(x)cos or HW10. Example 9.3 Calculation of a normalization factor Given that the wavefunction for the hydrogen atom in the ground state (n = 1) is of the form = Ne , where r is the distance from the nucleus to the electron and do is the Bohr radius, calculate the normalization factor N.

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT