Question

1). A 100 Ω resistance, 10 µF capacitance and a 1.1 H inductance in series are...

1). A 100 Ω resistance, 10 µF capacitance and a 1.1 H inductance in series are connected across a 220 V sinusoidal source. Find their total series impedance value @: (i) 60 Hz (ii) 30 Hz (iii) dc (iv) ∞ Hz

b)Find values of two components (R,C or R,L) in series whose total impedance is 6 kΩ / –30° @ 200 Hz ..

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
1). A 100 Ω resistance, 10 µF capacitance and a 1.1 H inductance in series are...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Find the impedance of an RLC series circuit with inductance 41 mH, capacitance 29 µF, and...

    Find the impedance of an RLC series circuit with inductance 41 mH, capacitance 29 µF, and resistance 110 Ω at a frequency of 60 Hz. Answer in units of Ω. Find the impedance at a frequency of 600 Hz. Answer in units of Ω.

  • Calculate the resonance frequency of a series RLC circuit for which the capacitance is 20 µF,...

    Calculate the resonance frequency of a series RLC circuit for which the capacitance is 20 µF, the resistance is 45 kΩ, and the inductance is 149 mH. Answer in units of Hz.

  • You have a resistor of resistance 250 Ω , an inductor of inductance 0.370 H ,...

    You have a resistor of resistance 250 Ω , an inductor of inductance 0.370 H , a capacitor of capacitance 5.90 μF and a voltage source that has a voltage amplitude of 26.0 V and an angular frequency of 280 rad/s . The resistor, inductor, capacitor, and voltage source are connected to form an L-R-C series circuit. Part F What is the voltage amplitude across the inductor? Part G What is the voltage amplitudes across the capacitor? Part H Explain...

  • Please solve Q1.Thanks PHY232: AC practice problems 1. The inductance and capacitance of the oscillatory circuit...

    Please solve Q1.Thanks PHY232: AC practice problems 1. The inductance and capacitance of the oscillatory circuit o f a radio station are 10 mH and 0.25 ?F wavelength of the transmitted waves (neglect resistance effect). respectively. Find the frequency and f A transformer with primary and seconda use velocity of light c-3 x10°m/s9.42 x10 m 2. ry voltage of 2000 volt and 200 volt takes a current 0.5 amp from the mains. Calculate the resistance connected across the secondary Primary...

  • An RLC series circuit is constructed with R = 190.0 Ω, C = 6.00 µF, and...

    An RLC series circuit is constructed with R = 190.0 Ω, C = 6.00 µF, and L = 0.54 H. The circuit is connected to an AC generator with a frequency of 60.0 Hz that delivers a maximum current of 2.30 A to the circuit. (a) What is the impedance of this circuit? ___ Ω (b) What are the maximum potential differences across each of the three circuit elements (R, L, and C)? VR, max =___ V VL, max =___...

  • A series RLC circuit has R = 420 Ω, L = 1.45 H, C = 3.4...

    A series RLC circuit has R = 420 Ω, L = 1.45 H, C = 3.4 µF. It is connected to an AC source with f = 60.0 Hz and ΔVmax = 150 V. What if the frequency is now increased to f = 84 Hz, and we want to keep the impedance unchanged? (C) Find the maximum voltages across each element. ΔVR = V ΔVL = V ΔVC = V

  • That's all I was given. 6) A series LRC circuit has resistance 400 Ω, inductance 0.900...

    That's all I was given. 6) A series LRC circuit has resistance 400 Ω, inductance 0.900 H, and capacitance 2.50 μF The source voltage has a constant amplitude 90.0 V, but an adjustable frequency a) Determine the impedance of the circuit if the source has angular frequency (i) 1000 rad/s, (i) 750 rad/s, and (ii) 500 rad/s. b) Determine the resonance angular frequency c) Describe (qualitatively) the change in the current amplitude as the 2 angular frequency is slowly adjusted...

  • An ideal inductor of inductance 7.7 mH is connected in parallel with a resistor of resistance...

    An ideal inductor of inductance 7.7 mH is connected in parallel with a resistor of resistance 141 Ω. This parallel combination is then connected in series with a second ideal inductor of inductance 4.5 mH. The sinusoidal voltage source for the circuit is 102 V, 71.6 Hz. Sketch the circuit and find the magnitude of the current, I, flowing through the resistor.

  • 5. A resistance 250, inductance 200mH, and capacitance 1 uF capacitor are all connected in series,...

    5. A resistance 250, inductance 200mH, and capacitance 1 uF capacitor are all connected in series, and across the combination is connected to a 500V, 60 Hz supply. Calculate (a) the current flowing, (b) the phase difference between the supply voltage and current, (c) the voltage across the coil and the capacitor. 6. An 300-uF capacitor is connected in series with 3.25-MQ resistance across a 300-V supply. The switch is closed. Calculate a) Time constant of the circuit b) Initial...

  • A series RLC circuit has a resistance of 22 Ω , a capacitance of 0.82 μF...

    A series RLC circuit has a resistance of 22 Ω , a capacitance of 0.82 μF , and an inductance of 240 mH . The circuit is connected to a variable-frequency source with a fixed rms voltage output of 12 V. Part A If the frequency that is supplied is set at the circuit's resonance frequency, what is the rms voltage across each of the circuit elements? Express your answers using two significant figures separated by commas.

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT