Question

A person, sitting on a stool rotating at a rate of 21 rpm, holds masses in...

A person, sitting on a stool rotating at a rate of 21 rpm, holds masses in each hand. When their arms are outstretched , the total rotational inertia of the system is 3.7 kg∙m2. The person pulls their arms close to their body, reducing the total rotational inertia to 1.7 kg∙m2. If there are no external torques, what is the new angular velocity of the system in rad/s?

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
A person, sitting on a stool rotating at a rate of 21 rpm, holds masses in...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A student, sitting on a stool rotating at a rate of 26 rev/min, holds masses in...

    A student, sitting on a stool rotating at a rate of 26 rev/min, holds masses in each hand. When his arms are extended, the total rotational inertia of the system is 8.8 kg · m2. He pulls his arms in close to his body, reducing the total rotational inertia to 5.1 kg ·m2 . External torques are negligible. The new rotational speed of the system is

  • A student, sitting on a stool, holds masses in each hand. When his arms are extended,...

    A student, sitting on a stool, holds masses in each hand. When his arms are extended, the total rotational inertia of the system is 5.6 kg·m2. When he pulls his arms in close to his body, he reduces the total rotational inertia to 1.4 kg·m2. When he is rotating with his hands held close to his body, his rotational velocity is 9 RPM. If there are no external torques, calculate the new rotational velocity of the system when he extends...

  • 1) Consider a system consisting of your instructor sitting on a stool while holding weights in...

    1) Consider a system consisting of your instructor sitting on a stool while holding weights in his hands. The stool can spin; it rotates at a rate of 26 RPM. The instructor holds masses in each hand. When his arms are fully extended, the total rotational inertia of the system is 4.5 kg · m2. He then moves his arms close to his body, reducing the total rotational inertia to 1.5 kg · m2. If there are no external torques,...

  • A professor sits on a rotating stool that is spinning at 10.0 rpm while she holds...

    A professor sits on a rotating stool that is spinning at 10.0 rpm while she holds a heavy weight in each of her hands. Her outstretched hands are 0.765 m from the axis of rotation, which passes through her head into the center of the stool. When she symmetrically pulls the weights in closer to her body, her angular speed increases to 36.5 rpm. Neglecting the mass of the professor, how far are the weights from the rotational axis after...

  • A professor sits on a rotating stool that is spinning at 10.0 rpm while she holds...

    A professor sits on a rotating stool that is spinning at 10.0 rpm while she holds a heavy weight in each of her hands. Her outstretched hands are 0.795 m from the axis of rotation, which passes through her head into the center of the stool. When she symmetrically pulls the weights in closer to her body, her angular speed increases to 40.5 rpm. Neglecting the mass of the professor, how far are the weights from the rotational axis after...

  • A professor sits on a rotating stool that is spinning at 10.0 rpm while she holds...

    A professor sits on a rotating stool that is spinning at 10.0 rpm while she holds a heavy weight in each of her hands. Her outstretched hands are 0.735 m from the axis of rotation, which passes through her head into the center of the stool. When she symmetrically pulls the weights in closer to her body, her angular speed increases to 32.5 rpm. Neglecting the mass of the professor, how far are the weights from the rotational axis after...

  • A professor sits on a rotating stool that is spinning at 10.0 rpm while she holds...

    A professor sits on a rotating stool that is spinning at 10.0 rpm while she holds a heavy weight in each of her hands. Her outstretched hands are 0.735 m from the axis of rotation, which passes through her head into the center of the stool. When she symmetrically pulls the weights in closer to her body, her angular speed increases to 24.5 rpm. Neglecting the mass of the professor, how far are the weights from the rotational axis after...

  • A professor sits on a rotating stool that is spinning at 10.0 rpm while she holds...

    A professor sits on a rotating stool that is spinning at 10.0 rpm while she holds a heavy weight in each of her hands. Her outstretched hands are 0.705 m from the axis of rotation, which passes through her head into the center of the stool. When she symmetrically pulls the weights in closer to her body, her angular speed increases to 24.5 rpm. Neglecting the mass of the professor, how far are the weights from the rotational axis after...

  • A professor sits on a rotating stool that is spinning at 10.0 rpm while she holds...

    A professor sits on a rotating stool that is spinning at 10.0 rpm while she holds a heavy weight in each of her hands. Her outs into the center of the stool. speed increases to 20.5 rpm. Neglecting the mass of the professor, how far are the weights from the hands are 0.725 m from the axis of rotation, which passes through her head she symmetrically pulls the weights in closer to her body, her rotational axis after she pulls...

  • A physics professor sits on a stool mounted to a low friction rotating platform while holding...

    A physics professor sits on a stool mounted to a low friction rotating platform while holding a 2.8 kg mass in each hand. When his arms are fully extended away from his body, the masses are each 1.15 m from the central vertical axis of rotation. A helpful student pushes on the masses as the professor begins spinning faster and faster until the professor rotates with an angular velocity of 0.9 rad/s. The moment of inertia of the professor and...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT