Question

For a SDOF system with mass 1.4 kg, spring constant 4.2 N/m, and damping constant 1.5...

For a SDOF system with mass 1.4 kg, spring constant 4.2 N/m, and damping constant 1.5 N-sec/m, the
damped period is (two decimals, units).

0 0
Add a comment Improve this question Transcribed image text
Answer #1

natural circular frequency = (spring constant/mass) =3 = 1.732 rad/s

now critical damping constant = 2*mass*natural circular frequency = 2*1.4*1.732 = 4.8497 Nsec/m

damping factor = damping constant/critical damping constant = 1.5/4.8497 =0.3092

so damped circular frequency = natural circular frequency*(1-damping factor 2)

1.732 *(1-0.30922) =1.6471 rad/s

Time period of damping = 2*/damped circular frequency = 3.8146 seconds Ans

Add a comment
Know the answer?
Add Answer to:
For a SDOF system with mass 1.4 kg, spring constant 4.2 N/m, and damping constant 1.5...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • The system parameters of a freely-vibrating damped SDOF system are as follows: Mass, m= 100 kg...

    The system parameters of a freely-vibrating damped SDOF system are as follows: Mass, m= 100 kg Damping Factor, c = 200 kg/s Spring Stiffness, k = 3000 N/m Initial Position, x, = 1 m Initial Velocity, v,= 0 m/s a) Create a MATLAB code and using the specified system parameters compute (using the correct units) the system characteristics: 1) natural (circular) frequency on; 2) cyclic frequency fn; 3) cyclic period p; 4) damped natural (circular) frequency 0g, and 5) damping...

  • A -kg mass is attached to a spring with stiffness 10 N/m. The damping constant for the system is ...

    A -kg mass is attached to a spring with stiffness 10 N/m. The damping constant for the system is 2 4 N-sec/m. If the mass is moved - m to the left of equilibrium and given an initial rightward velocity of - m/sec, determine the equation of motion of the mass and give its damping factor, quasiperiod, and quasifrequency. What is the equation of motion? 15 2 (Type an exact answer, using radicals as needed.) A -kg mass is attached...

  • A-kg mass is attached to a spring with stiffness 40 N/m. The damping constant for the...

    A-kg mass is attached to a spring with stiffness 40 N/m. The damping constant for the system is 2 N-sec/m. If 15 the mass is moved 8 - m to the left of equilibrium and given an initial leftward velocity of į m/sec, determine the equation of motion of the mass and give its damping factor, quasiperiod, and quasifrequency. What is the equation of motion? y(t) = (Type an exact answer, using radicals as needed.) The damping factor is The...

  • A į kg mass is attached to a spring with stiffness 4N/m and a damping constant...

    A į kg mass is attached to a spring with stiffness 4N/m and a damping constant 1 N sec/m. The mass is displaced im to the left and given a velocity of 1m/sec to the left. (i) Find the equation of motion of the mass. (ii) What kind of motion do you get? Underdamped, overdamped or critically damped? (iii) What is the maximum displacement that the mass will attain?

  • 12 Az-kg mass is attached to a spring with stiffness 25 N/m. The damping constant for...

    12 Az-kg mass is attached to a spring with stiffness 25 N/m. The damping constant for the system is 4 N-sec/m. If the mass is moved m to the left of equilibrium and given an initial 5 5 rightward velocity of 19 m/sec, determine the equation of motion of the mass and give its damping factor, quasiperiod, and quasifrequency. kg What is the equation of motion? y(t) = (Type an exact answer, using radicals as needed.) The damping factor is

  • A 1-kg mass is attached to a spring with stiffness 10 N/m. The damping constant for...

    A 1-kg mass is attached to a spring with stiffness 10 N/m. The damping constant for the system is 7 N-sec/m. If the mass is pulled^ m to the left of equilibrium and given an initial rightward velocity of 4 m/sec a) Find and solve the equation of motion governing the system b) State the type of motion for the system? c) When will the mass first return to its equilibrium position?

  • A 4-kg mass is attached to a spring with stiffness 112 N/m. The damping constant for...

    A 4-kg mass is attached to a spring with stiffness 112 N/m. The damping constant for the system is 16/7 N-sec/m. If the mass is pulled 20 cm to the right of equilibrium and given an initial rightward velocity of 2 m/sec, what is the maximum displacement from equilibrium that it will attain? 1 -2/7 617 1 (2+.4/7) 67 2+ meters. The maximum displacement is e (Type an exact answer, using radicals as needed.) A 4-kg mass is attached to...

  • 8 1 A--kg mass is attached to a spring with stiffness 20 N/m. The damping constant...

    8 1 A--kg mass is attached to a spring with stiffness 20 N/m. The damping constant for the system is 2 N-sec/m. If the mass is moved 4 quasiperiod, and quasifrequency. m/sec, determine the equation of motion of the mass and give its damping factor, 88 m to the left of equilibrium and given an initial leftward velocity of 15 15 What is the equation of motion? y(t) = (Type an exact answer, using radicals as needed.) The damping factor...

  • 8 Až kg mass is attached to a spring with stiffness 16 N/m. The damping constant...

    8 Až kg mass is attached to a spring with stiffness 16 N/m. The damping constant for the system is 2 N-sec/m. If the mass is moved 15 m to the left of equilibrium and 56 given an initial leftward velocity of 15 m/sec, determine the equation of motion of the mass and give its damping factor, quasiperiod, and quasifrequency. What is the equation of motion? y(t) = 1 (Type an exact answer, using radicals as needed.)

  • A 3-kg mass is attached to a spring with stiffness 81 N/m. The damping constant for...

    A 3-kg mass is attached to a spring with stiffness 81 N/m. The damping constant for the system is 18/3 N-sec/m. If the mass is pulled 20 cm to the right of equilibrium and given an initial rightward velocity of 3 m/sec, what is the maximum displacement from equilibrium that it will attain? The maximum displacement is meters (Type an exact answer, using radicals as needed.)

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT