Question

In what ways does the Franck-Hertz experiment disagree with the Bohr model?

In what ways does the Franck-Hertz experiment disagree with the Bohr model?

0 0
Add a comment Improve this question Transcribed image text
Answer #1

While Franck and Hertz were unaware of it when they published their experiments in 1914,[16] in 1913 Niels Bohr had published a model for atoms that was very successful in accounting for the optical properties of atomic hydrogen. These were usually observed in gas discharges, which emitted light at a series of wavelengths. Ordinary light sources like incandescent light bulbs emit light at all wavelengths. Bohr had calculated the wavelengths emitted by hydrogen very accurately.[17]

The fundamental assumption of the Bohr model concerns the possible binding energies of an electron to the nucleus of an atom. The atom can be ionized if a collision with another particle supplies at least this binding energy. This frees the electron from the atom, and leaves a positively charged ion behind. There is an analogy with satellites orbiting the earth. Every satellite has its own orbit, and practically any orbital distance, and any satellite binding energy, is possible. Since an electron is attracted to the positive charge of the atomic nucleus by a similar force, so-called "classical" calculations suggest that any binding energy should also be possible for electrons. However, Bohr assumed that only a specific series of binding energies occur, which correspond to the "quantum energy levels" for the electron. An electron is normally found in the lowest energy level, with the largest binding energy. Additional levels lie higher, with smaller binding energies. Intermediate binding energies lying between these levels are not permitted. This was a revolutionary assumption.[6]

Franck and Hertz had proposed that the 4.9 V characteristic of their experiments was due to ionization of mercury atoms by collisions with the flying electrons emitted at the cathode. In 1915 Bohr published a paper noting that the measurements of Franck and Hertz were more consistent with the assumption of quantum levels in his own model for atoms.[18] In the Bohr model, the collision excited an internal electron within the atom from its lowest level to the first quantum level above it. The Bohr model also predicted that light would be emitted as the internal electron returned from its excited quantum level to the lowest one; its wavelength corresponded to the energy difference of the atom's internal levels, which has been called the Bohr relation.[4] Franck and Hertz's observation of emission from their tube at 254 nm was also consistent with Bohr's perspective. Writing following the end of World War I in 1918, Franck and Hertz had largely adopted the Bohr perspective for interpreting their experiment, which has become one of the experimental pillars of quantum mechanics.[1][3] As Abraham Pais described it, "Now the beauty of Franck and Hertz's work lies not only in the measurement of the energy loss E2-E1 of the impinging electron, but they also observed that, when the energy of that electron exceeds 4.9 eV, mercury begins to emit ultraviolet light of a definite frequency ν as defined in the above formula. Thereby they gave (unwittingly at first) the first direct experimental proof of the Bohr relation!"[4] Franck himself emphasized the importance of the ultraviolet emission experiment in an epilogue to the 1960 Physical Science Study Committee (PSSC) film about the Franck–Hertz experiment.[16]

thumbs up

Add a comment
Know the answer?
Add Answer to:
In what ways does the Franck-Hertz experiment disagree with the Bohr model?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • 6. Franck-Hertz experiment. Mercury vapor is used in a Franck-Hertz experiment. You get the following data:...

    6. Franck-Hertz experiment. Mercury vapor is used in a Franck-Hertz experiment. You get the following data: 400 Franck-Hertz Dato for Mercury 300 4 100 10 15 Accelereting Voltage From this graph, estimate the wavelength of a photon emitted when an electron in the first excited state of Hg jumps to the ground state.

  • How does the Bohr model of hydrogen explain the line spectra that this observed when hydrogen...

    How does the Bohr model of hydrogen explain the line spectra that this observed when hydrogen is thermally and electrically excited? You may describe using words, drawings and/or equations. Thank you

  • EXPERIMENT #9: SPECTRUM OF THE HYDROGEN ATOM ADDITIONAL QUESTIONS 1, What does the energy of the...

    EXPERIMENT #9: SPECTRUM OF THE HYDROGEN ATOM ADDITIONAL QUESTIONS 1, What does the energy of the electron from the hydrogen atom become when n is a very large number, or approaching infinity? We say an electron with this energy has separated from the nucleus, which is now an ion. Determine the quantity of energy (AE) required to ionize an electron from its ground state in the hydrogen atom. 2. The Bohr model holds for any one-electron atom. Calculate the lowest...

  • In an early model of the hydrogen atom (the Bohr model), the electron orbits the proton...

    In an early model of the hydrogen atom (the Bohr model), the electron orbits the proton in uniformly circular motion. The radius of the circle is restricted (quantized) to certain values given by rn2 for n1,2, 3.,.. where ao52.92 pm. What is the speed of the electron if it orbits in (a) the smallest allowed orbit and (b) the third smallest orbit? (c) If the electron moves to larger orbits, does its speed increase, decrease, or stay the same?

  • Bonr Model - Urpits and Energy Levels Bohr Model Bohr energy levels in joules: E,-(2.18x10-**4 in...

    Bonr Model - Urpits and Energy Levels Bohr Model Bohr energy levels in joules: E,-(2.18x10-**4 in eV: E, =-(13.6e1.n=1.2.3.4.... Radii for Bohr orbits: 6. = 15.2910* m , 2 – 1,2,3,4... Radii for Bohr Orbits nm (a) What is the radius of the 3rd Bohr orbit in a Hydrogen atom in nm? 1 nm = 10-ºm. Keep 3 decimal places. Enter a number Incorrect (0.0%) Submit (3 attempts remaining) A neutral lithium atom has 3 protons in the nucleus and...

  • Bohr Atom 01 Due this Tuesday, Apr 24 at 11:45 am (EDT) The Bohr Model of...

    Bohr Atom 01 Due this Tuesday, Apr 24 at 11:45 am (EDT) The Bohr Model of the hydrogen atom proposed that there were very specific energy states that the electron could be in. These states were called stationary orbits or stationary states. Higher energy states were further from the nucleus. These orbits were thought to be essentially spherical shells in which the electrons orbited at a fixed radius or distance from the nucleus. The smallest orbit is represented by n=1,...

  • Using the Bohr model what is the radius of the electron orbit in the Hydrogen atom...

    Using the Bohr model what is the radius of the electron orbit in the Hydrogen atom when the electron is in the n = 14 state? in nm. SHOW ALL WORK AND ANSWERS

  • In an early model of the hydrogen atom (the Bohr model), the electron orbits the proton...

    In an early model of the hydrogen atom (the Bohr model), the electron orbits the proton in uniformly circular motion. The radius of the circle is restricted (quantized) to certain values given by r = n^2a_0, for n = 1, 2, 3, ..., where a_0 = 52.92 pm. What is the speed of the electron if it orbits in (a) the smallest allowed orbit and (b) the seventh smallest orbit? (c) If the electron moves to larger orbits, does its...

  • in a hydrogen atom. 8. Using the Bohr model, determine the wavelength when an electron in...

    in a hydrogen atom. 8. Using the Bohr model, determine the wavelength when an electron in n=1 is excited to n = 3. 9. How are the Bohr model and the quantum mechanical model of the hydrogen atom similar? How are they different? 10. What are the allowed values for each of the four quantum numbers: n, l, m, and m?

  • Bohr model of an atom In the Bohr model of an atom (see figure below) the...

    Bohr model of an atom In the Bohr model of an atom (see figure below) the electrons move on fixed circular orbits around the nucleus. On the th orbit the magnitude of the angular momentum of the electron is given by where ћ 6.626 x 10-34 m 2 kg/s is the reduced Planck constant. +Ze (a) Calculate the radius r of an electron orbit in the hydrogen atom. Express your answer in terms of n, ћ, co, the electron charge...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT