Question

Consider a piston-cylinder device (system) that contains 0.06 m3 of air at 300 kPa and 125...

Consider a piston-cylinder device (system) that contains 0.06 m3 of air at 300 kPa and 125 ̊C.

(a) If the volume of air in the device increases to 0.15 m3 while the pressure remains constant, determine the work done by the system during the process.

(b) If as a result of heat transfer to the surrounding, the pressure and temperature in the device drop to 240 kPa and 55 ̊C, respectively, and the piston is held such that the volume remains constant, determine the boundary work done during the process.

Consider the system in problem no. 1 above. If the air is compressed to 0.015 m3 in such a way that the temperature inside the cylinder remains constant, and assuming an ideal gas behavior, determine the work done during the proces

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
Consider a piston-cylinder device (system) that contains 0.06 m3 of air at 300 kPa and 125...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Piston Cylinder device contains a 0.32 m3 of air at an initial condition of 300 KPa,...

    Piston Cylinder device contains a 0.32 m3 of air at an initial condition of 300 KPa, 500 K and is compressed isothermally to a final pressure of 700 kPa. For air, R= 287 J/Kg.K 1. Determine the work done during the process. 2. Determine if the work is done on the system or done by the system. 3. Plot the PV diagram showing all the states and numbers on it.

  • Piston Cylinder device contains a 0.32 m3 of air at an initial condition of 300 kPa,...

    Piston Cylinder device contains a 0.32 m3 of air at an initial condition of 300 kPa, 500 K and is compressed isothermally to a final pressure of 700 kPa. For air, R= 287 J/Kg.K 1. Determine the work done during the process. 2. Determine if the work is done on the system or done by the system. 3. Plot the PV diagram showing all the states and numbers on it.

  • Piston Cylinder device contains a 0.32 m3 of air at an initial condition of 300 kPa,...

    Piston Cylinder device contains a 0.32 m3 of air at an initial condition of 300 kPa, 500 K and is compressed isothermally to a final pressure of 700 kPa. For air, R=287 J/Kg.K 1. Determine the work done during the process. 12% 2. Determine if the work is done on the system or done by the system. 4% 3. Plot the PV diagram showing all the states and numbers on it. 4% oras

  • A piston cylinder device contains air with a volume of 0.05 m3 at 25oC and 100...

    A piston cylinder device contains air with a volume of 0.05 m3 at 25oC and 100 kPa pressure. The gas is now compressed to a final temperature of 95oC at 250 kPa. This compression is polytropic and follows PVn=constant. a. Determine how much boundary work was added to the gas [in kJ] b. How much heat was added or removed from this system during this process? [in kJ]

  • Question # 2 (20%) Piston Cylinder device contains a 0.32 m3 of air at an initial...

    Question # 2 (20%) Piston Cylinder device contains a 0.32 m3 of air at an initial condition of 300 kPa, 500 K and is compressed isothermally to a final pressure of 700 kPa. For air, R=287 J/Kg.K 1. Determine the work done during the process. 12% 2. Determine if the work is done on the system or done by the system. 4% 3. Plot the PV diagram showing all the states and numbers on it. 4%

  • Question # 2 (20%) Piston Cylinder device contains a 0.32 m3 of air at an initial...

    Question # 2 (20%) Piston Cylinder device contains a 0.32 m3 of air at an initial condition of 300 kPa, 500 K and is compressed isothermally to a final pressure of 700 kPa. For air, R= 287 J/Kg.K 1. Determine the work done during the process. 12% 2. Determine if the work is done on the system or done by the system. 4% 3. Plot the PV diagram showing all the states and numbers on it. 4%

  • A frictionless piston-cylinder device contains 0.2 kg of air at 100 kPa and 27°C. The air...

    A frictionless piston-cylinder device contains 0.2 kg of air at 100 kPa and 27°C. The air is now compressed slowly according to the relation P Vk = constant, where k = 1.4, until it reaches a final temperature of 77°C. Sketch the P-V diagram of the process with respect to the relevant constant temperature lines, and indicate the work done on this diagram. Using the basic definition of boundary work done determine the boundary work done during the process [-7.18...

  • A piston–cylinder device initially contains 0.6 m3 of saturated water vapor at 250 kPa. At this...

    A piston–cylinder device initially contains 0.6 m3 of saturated water vapor at 250 kPa. At this state, the piston is resting on a set of stops, and the mass of the piston is such that a pressure of 300 kPa is required to move it. Heat is now slowly transferred to the steam until the volume becomes 1.5 m3. Use the data from the steam tables. a) Determine the final temperature. b) Determine the work done during this process. c)...

  • Problem 7-173- A piston–cylinder device contains air that undergoes a reversible thermodynamic cycle. Initially, air is...

    Problem 7-173- A piston–cylinder device contains air that undergoes a reversible thermodynamic cycle. Initially, air is at 400 kPa and 300 K with a volume of 0.3 m3. Air is first expanded isothermally to 150 kPa, then compressed adiabatically to the initial pressure, and finally compressed at the constant pressure to the initial state. Accounting for the variation of specific heats with temperature, determine the work and heat transfer for each process.

  • A 0.073-m3 piston-cylinder device contains 0.15 kg of Argon. Weights are placed on top of the...

    A 0.073-m3 piston-cylinder device contains 0.15 kg of Argon. Weights are placed on top of the piston so that the initial pressure inside the cylinder is at 335 kPa. Now weights are removed one-by-one until the final volume is 3.00 times that of the initial volume. During this process, the argon's temperature is maintained constant. Determine the final pressure in the device. Round your answers to one decimal place. kPa

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT