Question

Air at T=25°C and pressure P=1 bar flows over a square plate with a velocity V=1...

Air at T=25°C and pressure P=1 bar flows over a square plate with a velocity V=1 m/s. This plate has a length L= 1 m and it is heated over its entire length; the plate temperature is constant Tp=100°C.

The following data are given. For air:

dynamic viscosity: mu = 1.9*10–5 kg/(m.s);

density: rho = 1.05 kg/m3;

conductivity k = 0.03 W/(m K);

Specific heat Cp = 1.007 kJ/(kg K);

Prandtl number Pr = 0.7

For laminar flow over a flat plate, use the relation

Nux = 0.332 (Rex)1/2 Pr1/3

For Turbulent flow over a flat plate, use the relation

Nux = (0.037 (Rex)4/5-871) Pr1/3

(The boundary layer flow over a flat plate will be laminar if (Rex= rho*U*x / mu < 5*105)

(The boundary layer flow over a flat plate will be turbulent if (Rex= rho*U*x/mu > 5*105)

1- Determine the Reynolds number at x=L, Re,

2- Check if the flow is laminar or turbulent for x=L,

3- Determine the Reynolds number as a function of x, Rex,

4- Determine the Nusselt number as a function of x, Nux,

5- Determine the convection heat transfer coefficient at x=L, h,

6- Determine the convection heat transfer coefficient as a function of x, hx,

7- Determine the convection heat transfer coefficient haverage,

8- Determine the rate of heat transfer flux q” from the plate in (W/m2),

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
Air at T=25°C and pressure P=1 bar flows over a square plate with a velocity V=1...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Exercise 2 Air at 20 °C and 1 atm flows over a flat plate at 50...

    Exercise 2 Air at 20 °C and 1 atm flows over a flat plate at 50 m/s. The plate is 300 cm long and is maintained at 60C. The width of the plate is 2 m. The critical Rec = 5 x 105 The properties are Conductivity k = 0.0263 W/mK, kinematic viscosity nu = v = 15.89 x 10-6 m²/s, Prandtl number is Pr=0.707 Density rho = p = 1.128 kg/m3 1. Determine the critical length Xc 2. Determine...

  • Consider air flows with velocity of U?=U= 10 m/s over a semi-finite smooth flat plate with...

    Consider air flows with velocity of U?=U= 10 m/s over a semi-finite smooth flat plate with L=97 cm long. Calculate the followings by assuming ? = 1.568 x 10-5 m2/s and ?=1.177 kg/m3. Figure 1 : Boundary layer over a flat plate Consider air flows with velocity of U?=U=10 m/s over a semi-finite smooth flat plate with L=97 cm long. Calculate the followings by assuming ? = 1.568 x 10-5 m2/s and ?=1.177 kg/m3. b) Under some flow and boundary...

  • Problem 1: In an experiment, Mercury at film temperature of 127 C flows over a flat...

    Problem 1: In an experiment, Mercury at film temperature of 127 C flows over a flat plate of length 500 mm and width of 20 mm. Results reveal that the velocity boundary layer thickness at the distance of 5 mm from the leading edge is 0.4 pim, and also th convection heat transfer coefficients in the laminar and turbulent regions (Rex.-2 x 10) take the form of GX İsit where x is measured in meters from the leading edge of...

  • 8) Air flows over a flat plate at a velocity of 20 m/s and a temperature...

    8) Air flows over a flat plate at a velocity of 20 m/s and a temperature of 20C. The surface temperature of the plate is 134C, and the length of the plate in the direction of flow is 1.5 m. Properties of air may be taken as A-0.030 W/m-C, Pr-0.700, and a/p 2.092E-5 m/s (5% ) What is the location from the leading edge, X, where the flow becomes turbulent Re (20)15 a l Ve30s T20 T LaLS 523 m...

  • Problem 1: Atmospheric air at 25°C flows over both surfaces of 2 m long flat plate...

    Problem 1: Atmospheric air at 25°C flows over both surfaces of 2 m long flat plate maintained at 125°C. For upper surface, velocity of air is 1 m/s and for lower surface, velocity is 10 m/s. (Rex,c = 5x105) (a) Determine the flow condition for upper and lower surfaces. (Laminar, or turbulent). If the condition is that laminar to turbulent is taking place, calculate the position where transition from the laminar to turbulent happens. (b) Determine the rate of heat...

  • 4) Air at 101 kPa and 360 K flows at 15 m/s over a flat plate...

    4) Air at 101 kPa and 360 K flows at 15 m/s over a flat plate maintained at 300 K Assume that the transition Reynolds number is 5x10 (0.332R 12Pr1/3 Re < 5 x 105 0.029Repr0:43 5 x 105 < Re <3 x 107 Assume that k-0.03 W/( mK), 20x10* m?ls, Pr-0.7.p=1.16 kg/m a) If the plate is 2 m long, sketch the local heat transfer coefficient over the plate. Specify the functional form of h with respect tox b)...

  • 1. (25 pts) Answer the following conceptual questions. Write down full explanations and derivations on a...

    1. (25 pts) Answer the following conceptual questions. Write down full explanations and derivations on a clean piece of paper. h, 8 h(x) 80) 1 a. The effect of transition from laminar to turbulent flow on local velocity boundary layer thickness, 8(x) and local convection coefficient, h(x) for steady flow over an isothermal plate is illustrated in the following figure. Why does the convection coefficient decrease with x in the laminar region? How would the local heat flux change with...

  • Start by checking your Reynolds number (Re) at the end of the plate, where it will...

    Start by checking your Reynolds number (Re) at the end of the plate, where it will be at a maximum. This will determine if your boundary layer is simply laminar along the length of the plate or if it becomes turbulent (the "mixed BL" condition). Once you know the conditions of the flow, you can solve for the velocity BL thickness directly with an equation from the list of external flow correlations (posted). Your properties should be looked up at...

  • Air flows with a velocity of 20 m/s over a flat plate of length 2 m....

    Air flows with a velocity of 20 m/s over a flat plate of length 2 m. The air properties are k = 0.030 W/mK, V = 20.92 x 10-6 m/s, Pr=0.700. a. What type(s) of flow (laminar/turbulent) exist on this plate? b. If the following relations are given for the laminar and turbulent local convection coefficients over the plate, haminar (x) = 20 houwbudemo (x) = .52 where x is the distance from the plate leading edge. Find the average...

  • (2 pts) Heat is transferred from a hot fluid (temperature T1 and heat transfer coefficient h2)...

    (2 pts) Heat is transferred from a hot fluid (temperature T1 and heat transfer coefficient h2) through a plane wall of thickness 8, surface area A and the thermal conductivity k. The thermal resistance for the set up is + (a) AC ) (b) A (i + + ) (c) 2 (na + + n2) (d) A (na + b +h2) (2 pts) An increase in convective heat transfer coefficient over a fin will (a) increase effectiveness (b) decrease effectiveness...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT