Question

A block with mass m = 14 kg rests on a frictionless table and is accelerated...

A block with mass m = 14 kg rests on a frictionless table and is accelerated by a spring with spring constant k = 4174 N/m after being compressed a distance x1 = 0.512 m from the spring’s unstretched length. The floor is frictionless except for a rough patch a distance d = 2.7 m long. For this rough path, the coefficient of friction is μk = 0.44.

1) How much work is done by the spring as it accelerates the block?

2) What is the speed of the block right after it leaves the spring?

3) How much work is done by friction as the block crosses the rough spot?

4) What is the speed of the block after it passes the rough spot?

5) Instead, the spring is only compressed a distance x2 = 0.12 m before being released.

How far into the rough path does the block slide before coming to rest?

6) What distance does the spring need to be compressed so that the block will just barely make it past the rough patch when released?

7) If the spring was compressed three times farther and then the block is released, the work done on the block by the spring as it accelerates the block is:

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Please rate it positively

Thanks

Add a comment
Know the answer?
Add Answer to:
A block with mass m = 14 kg rests on a frictionless table and is accelerated...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A block with mass m = 16 kg rests on a frictionless table and is accelerated...

    A block with mass m = 16 kg rests on a frictionless table and is accelerated by a spring with spring constant k = 4850 N/m after being compressed a distance x1 = 0.51 m from the spring’s unstretched length. The floor is frictionless except for a rough patch a distance d = 2.5 m long. For this rough path, the coefficient of friction is μk = 0.45. How much work is done by the spring as it accelerates the...

  • A block with mass m - 17 kg rests on a frictionless table and is accelerated...

    A block with mass m - 17 kg rests on a frictionless table and is accelerated by a spring with spring constant k = 4267 N/m after being compressed a distance x -0.564 m from the spring's unstretched length. The floor is frictionless except for a rough patch a distanced 2.3 m long. For this rough path, the coefficient of friction is - 0.46. "How much work is done by the spring as it accelerates the block? You currently have...

  • A mass m = 16 kg rests on a frictionless table and accelerated by a spring...

    A mass m = 16 kg rests on a frictionless table and accelerated by a spring with spring constant k = 4431 N/m. The floor is frictionless except for a rough patch. For this rough path, the coefficient of friction is μk = 0.52. The mass leaves the spring at a speed v = 3.3 m/s. 1)How much work is done by the spring as it accelerates the mass?J 2)How far was the spring stretched from its unstreched length?m 3)The...

  • A mass m = 11 kg rests on a frictionless table and accelerated by a spring...

    A mass m = 11 kg rests on a frictionless table and accelerated by a spring with spring constant k = 4977 N/m. The floor is frictionless except for a rough patch. For this rough path, the coefficient of friction is μk = 0.46. The mass leaves the spring at a speed v = 4.1 m/s. 1)How much work is done by the spring as it accelerates the mass? 2)How far was the spring stretched from its unstreched length? 3)The...

  • A mass m = 10 kg rests on a frictionless table and accelerated from rest by...

    A mass m = 10 kg rests on a frictionless table and accelerated from rest by a spring with spring constant k = 4490 N/m. The floor is frictionless except for a rough patch. For this rough patch, the coefficient of the kinetic friction is µk = 0.5. The mass leaves the spring with speed v = 2.8 m/s. Use work and energy to answer the following questions: (a) How much work is done by the spring as it accelerates...

  • A 2.1.0-kg block is accelerated from rest by a compressed spring (ks = 545 N/m). The...

    A 2.1.0-kg block is accelerated from rest by a compressed spring (ks = 545 N/m). The block leaves the spring at the spring’s relaxed length. The block then travels along a rough horizontal with a coefficient of kinetic friction μk = 0.240 a distance of x = 6.90 m before frictional force stops the block. What was the original compression distance of the spring?

  • Block A of mass mA is moving horizontally with speed Va along a frictionless surface

     Block A of mass mA is moving horizontally with speed Va along a frictionless surface. It collides elastically with block B of mass mB that is initially at rest. After the collision block B enters a rough surface at x =0 with a coefficient of kinetic friction that increases linearly with distance μ(x) = bx for 0 ≤ x ≤ d, where b is a positive constant. At x=d block B collides with an unstretched spring with spring constant k...

  • PHYS1030 Newtonian Mechanks QUESTION #10: A 22-kg block is held a rest against a spring of...

    PHYS1030 Newtonian Mechanks QUESTION #10: A 22-kg block is held a rest against a spring of force constant k # 930 N/m as shown below. Initially the spring is compressed a distance of 15 em. When the block is released, it slides across a surface that is frictionless except for a rough patch of width 60.0 cm that has a coefficient of kinetic friction μ.-0.34. Find the block's speed (m/s): (a) before crossing the rough patch b)after crossing the rough...

  • As shown in the figure below, a 2.25-kg block is released from rest on a ramp of height h.

    As shown in the figure below, a 2.25-kg block is released from rest on a ramp of height h. When the block is released, it slides without friction to the bottom of the ramp, and then continues across a surface that is frictionless except for a rough patch of width 15.0 cm that has a coefficient of kinetic friction μk = 0.520. Find h such that the block's speed after crossing the rough patch is 4.20 m/s. An object with a...

  • (10 points) A block of mass m = 0.80 kg is held in place against a...

    (10 points) A block of mass m = 0.80 kg is held in place against a spring with spring constant k = 3000 N/m, compressing it a distance of 0.022 m. The block is released from rest and is projected to the right and down a ramp of height h = 1.5 m, as shown in the figure below. The entire surface is frictionless until point B, after which the coefficient of friction between the block and the surface is...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT