Question

You are to assess the biomechanics of a male’s arm using his bicep to hold a...

You are to assess the biomechanics of a male’s arm using his bicep to hold a 20 kg object in his hand. The upper arm is perpendicular to the ground while the forearm is parallel to the ground. The male’s forearm is 26.5 cm long and weighs 1.42 kg. The man’s hand weighs 0.54 kg and is 19 cm long. The center of masses for the forearm and hand are 43% and 50% of the extremity lengths from the proximal joint, respectively.

You may assume that only the bicep generates the force, the angle between the bicep and forearm is 75 degrees, and the bicep insertion is 5cm from the elbow joint.

a) Draw a complete free body diagram of the above described activity. (5 pts)

b) Calculate the elbow moment due to external load and body segments weight. (5 pts)

c) Calculate the elbow contact force and force exerted by the bicep. (5 pts)

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
You are to assess the biomechanics of a male’s arm using his bicep to hold a...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • 2. Bill is holding a 12 kg barbell in his hand. His upper arm is perpendicular...

    2. Bill is holding a 12 kg barbell in his hand. His upper arm is perpendicular to the ground, and his elbow is flexed to produce a 40º angle at the elbow joint. His forearm has a mass of 12 kg. The distance from the elbow joint to the weight in his hand is 35 cm. The center of mass (COM) of his forearm is located 14 cm from the elbow joint. Draw a free body diagram of this scenario....

  • A slightly simplified view of the arm has the hinge at the elbow, the bicep attaching...

    A slightly simplified view of the arm has the hinge at the elbow, the bicep attaching to the bone 2.50 cm from the 'hinge' and a mass supported in the hand 32.0 cm from the 'hinge' If the mass of the forearm is 2.60 kg and its center of mass is 12.0 cm from the 'hinge', how many Newtons of force from the bicep would be required to hold up a weight of 98.0 N? Biceps 32 cm 2.5 cm

  • An athlete is measuring the force by their flexor muscle by pulling a rope horizontally at...

    An athlete is measuring the force by their flexor muscle by pulling a rope horizontally at a constant force. While pulling the rope the muscle applies a force on the forearm an angle of 71° as shown in the diagram. While keeping your forearm completely vertical, the tension in the rope is at 185N. The athlete's muscle is attached to the forearm 5 cm from the elbow joint and that the weight of your forearm is 22 N with a...

  • 3) Bicep Curls Your elbow is the pivot point for your forearm. Your bicep attaches to...

    3) Bicep Curls Your elbow is the pivot point for your forearm. Your bicep attaches to your forearm at 0.05m. Your forearm is nominally 0.35m to the center of your hand, where you hold a weight the Earth on your forearm is 12N. a) Draw a free body diagram and an EFBD for when your forearm is parallel to the ground. b) The system is in static equilibrium. Sum the torques and the forces. Make sure you identify them all....

  • Constants A 71.0 kg weight lifter is doing arm raises using a 7.50 kg weight in...

    Constants A 71.0 kg weight lifter is doing arm raises using a 7.50 kg weight in her hand. Her arm pivots around the elbow joint, starting 40.0 below the horizontal. (See the figure(Figure 1).) Biometric measurements have shown that both forearms and the hands together account for 6.40 % of a person's weight. Since the upper arm is held vertically, the biceps muscle always acts vertically and is attached to the bones of the forearm 5.50 cm from the elbow...

  • Part A A 75.0 kg weight lifter is doing arm raises using a 7.50 kg weight...

    Part A A 75.0 kg weight lifter is doing arm raises using a 7.50 kg weight in her hand. Her arm pivots around the elbow joint, starting 40.0° below the horizontal (See the figure(Figure 1).) Biometric measurements have shown that both forearms and the hands together account for 5.75 % of a person's weight. Since the upper arm is held vertically, the biceps muscle always acts vertically and is attached to the bones of the forearm 5.50 cm from the...

  • A 75.0 kg weight lifter is doing arm raises using a 7.50 kg weight in her...

    A 75.0 kg weight lifter is doing arm raises using a 7.50 kg weight in her hand. Her arm pivots around the elbow joint, starting 40.0 below the horizontal. (See the figure (Figure 1).) Biometric measurements have shown that both forearms and the hands together account for 5.75% of a person's weight. Since the upper arm is held vertically, the biceps muscle always acts vertically and is attached to the bones of the forearm 5.50 cm from the elbow Part...

  • • You hold a 5 kg bowling ball in your hand, forearm horizontal. Your forearm is...

    • You hold a 5 kg bowling ball in your hand, forearm horizontal. Your forearm is 0.35 m long. Your bicep connects your humerus to your ulna, with the connection at the ulna 0.05 m from the elbow joint. Find the force that the bicep must exert on your ulna to hold the bowling ball.

  • A person with their upper arm vertical and their forearm horizontal holds a 4.5-kg iron cannon...

    A person with their upper arm vertical and their forearm horizontal holds a 4.5-kg iron cannon ball as shown in the figure below. Assume the mass of the forearm and hand is 1.5 kg, with a center of mass 15 cm from the elbow. The center of the cannonball is 32 cm from the elbow, and the force of the biceps is applied 5.0 cm from the elbow. What force is exerted by the bicep? Elbow contact point 4.5 kg...

  • Dan's biceps muscle has a moment arm about the elbow joint of 0.011 m when the...

    Dan's biceps muscle has a moment arm about the elbow joint of 0.011 m when the joint is held at a joint angle of 90 degrees and can produce a force of 526 N. His forearm is 0.24 m from the elbow joint center to the center of his hand where he grips a handle. His forearm has a mass of 1.2 kg and the center of mass is located directly above the elbow joint. How much force can he...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT