Question

the acceleration of a block m=1.00kg attached to a spring is given by a=-0.302 m/s^2) cos{2.41rad/s}t....

the acceleration of a block m=1.00kg attached to a spring is given by a=-0.302 m/s^2) cos{2.41rad/s}t. what is the frequency of the block’s motion. what is the maximun speed of the block. what is the am plitude of the block motion. what is total energy stored in the ststem
0 0
Add a comment Improve this question Transcribed image text
Answer #1

Concept - use the properties of equation of simple harmonic motion to find the different values as required

***********************************************************************************************
Check the answer and let me know immediately if you find something wrong or missing... I will rectify the mistakes asap if any

Add a comment
Know the answer?
Add Answer to:
the acceleration of a block m=1.00kg attached to a spring is given by a=-0.302 m/s^2) cos{2.41rad/s}t....
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Problem3 A (2+0.1y) kg block attached to a spring undergoes simple harmonic motion described by x...

    Can you please answer both questions, Y=0 Problem3 A (2+0.1y) kg block attached to a spring undergoes simple harmonic motion described by x (30 cm) cos[(6.28 rad/s)t + /4) Determine (a) the amplitude, (b) the spring constant, (c) the frequency, (d) the maximum speed (e) maximum acceleration of the block, and (e) the total energy of the spring-block. of the block Problem 4 A block attached to a spring, undergoes simple harmonic motion with a period of 1.5 + y)...

  • z waqod A 2- kg block attached to a spring undergoes simple harmonic motion described by...

    z waqod A 2- kg block attached to a spring undergoes simple harmonic motion described by = (30 cm) cos[(6.28 rad/s)t + /4]. Determine (a) the amplitude, (b) the spring constant, (c) the frequency, (d) the maximum speed of the block, (e) maximum acceleration of the block, and (e) the total energy of the spring-block. Problem 3 A block attached to a spring, undergoes simple harmonic motion with a period of 1.5 s, and amplitude of 20 cm. The mechanical...

  • Part A: 10 points each (Questions 1-4 1. A block mass of 3 kg attached with a spring kg attached with a spring of s...

    Part A: 10 points each (Questions 1-4 1. A block mass of 3 kg attached with a spring kg attached with a spring of spring constant 2500 N/m as shown in the Figure below. The amplitude or maximum displacement X max is 7m. Calculate O a) Maximum Potential energy stored in the spring b) Maximum kinetic energy of the block c) the total energy-spring block system 2. A small mass moves in simple harmonic motion according to the equation x...

  • A block mass of 3 kg attached with a spring of spring constant 2000 N/m as shown in the Figure below

    Part A: 10 points each (Questions 1-4) 1. A block mass of 3 kg attached with a spring of spring constant 2000 N/m as shown in the Figure below. The amplitude or maximum displacement Xmax is 5m. Calculatea) Maximum Potential energy stored in the spring b) Maximum kinetic energy of the block c) the total energy-spring block system 2. A small mass moves in simple harmonic motion according to the equation x = 2 Cos(45t), where "x" displacement from equilibrium point in meters and "t"...

  • c) The equation below describes the position r of a block attached to a spring at...

    c) The equation below describes the position r of a block attached to a spring at time t: x(t)-x,n cos (wt + ?) i. (2 marks) Explain in words the physical meaning of the variables xm, ? and ?. ii. (2 marks) Derive an expression for the velocity of the block. iii. (2 marks) The spring constant of your oscillator is 400 N/m. At some time the position, velocity and acceleration of the block are r-0.100 m, v- 13.6 m/s...

  • A block of mass 6.00kg is connected to a spring on a horizontal frictionless surface. By...

    A block of mass 6.00kg is connected to a spring on a horizontal frictionless surface. By stretching the block and then releasing it, the block-spring system undergoes simple harmonic motion. The block’s position as a function of time is given by                        x = 45.0 cm cos(3pi(t) - pi/3) a. Determine the angular frequency and period of the motion b. Determine the amplitude c. Determine the phase angle e. Determine the time when the position x = -18.0cm f. Determine the...

  • Problem 10. (20 pts) The displacement of a block of mass 0.2 kg on a spring...

    Problem 10. (20 pts) The displacement of a block of mass 0.2 kg on a spring is given by x(t) = (0.25 m) cos((2/s)t + π/5) A) What are the angular frequency (in rad/s), frequency (in Hz), and period of this motion? B) Find the spring stiffness of the spring. C) Find the x-component of the velocity of the block as a function of time. D) Find the total energy of the block/spring system E) Find the maximum speed of...

  • 2. A block of unknown mass is attached to a spring with a spring constant of...

    2. A block of unknown mass is attached to a spring with a spring constant of 5.00 N/m and undergoes simple harmonic motion with an amplitude of 10.0 cm. When the block is halfway between its equilibrium position and the end point, its speed is measured to be 32.0 cm/s (a) Calculate the mass of the block (b) Calculate the period of the motion (c) Calculate the maximum acceleration of the block. kg m/s

  • A block of mass m is 650 g which is tied to a spring whose spring...

    A block of mass m is 650 g which is tied to a spring whose spring constant is 62 N/m. The block is pulled a distance x=11 cm from its equilibrium position at x=0 on a frictionless surface and released from rest at t=0 s. What are the angular frequency, the frequency, and the period of the resulting motion? What is the amplitude of the oscillation? What is the maximum speed Vm of the oscillating block, and where is the...

  • A harmonic oscillator consists of a block attached to a spring (k = 400 N/m). The...

    A harmonic oscillator consists of a block attached to a spring (k = 400 N/m). The mass is initially displaced to x_max = 0.128 m. At some later time, t, the block has the following kinematic variables: x = 0.100 m, v = -13.6 m/s, a = -123 m/s^2 a) find the frequency of oscillation b) the mass of the block c) the amplitude of the motion. d) and the total mechanical energy of the system.

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT