Question

Question 5 or a unity feedback system in Figure 4 C(s) (s+40%s +100) Figure 4 a) Find the value of gain, K, to yield a closed
0 0
Add a comment Improve this question Transcribed image text
Answer #1

CO bu と -40-10 3 2D ds4身 2. S 4000 be on St3.24 Dus 了才. 一 L2 2-592 Om Sd t, Sj

Add a comment
Know the answer?
Add Answer to:
Question 5 or a unity feedback system in Figure 4 C(s) (s+40%s +100) Figure 4 a) Find the value o...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • 4) A unity feedback control system shown in Figure 2 has the following controller and process with the transfer functions: m(60100c Prs(s +10(s+7.5) a) Obtain the open- and closed-loop transfer f...

    4) A unity feedback control system shown in Figure 2 has the following controller and process with the transfer functions: m(60100c Prs(s +10(s+7.5) a) Obtain the open- and closed-loop transfer functions of the system. b) Obtain the stability conditions using the Routh-Hurwitz criterion. e) Setting by trial-and-error some values for Kp, Ki, and Ko, obtain the time response for minimum overshoot and minimum settling time by Matlab/Simulink. Y(s) R(s) E(s) Fig. 2: Unity feedback control system 4) A unity feedback...

  • 2. A unity feedback system has the following open-loop transfer function -0.5s + 0.5 G(s)i a)...

    2. A unity feedback system has the following open-loop transfer function -0.5s + 0.5 G(s)i a) Obtain the Nyquist plot and analyze the stability of the closed loop system b) Compute the stability margins from the Nyquist plot.

  • b) The Nyquist plot of a unity feedback control system is as shown in Figure Q5(b)....

    b) The Nyquist plot of a unity feedback control system is as shown in Figure Q5(b). Nyqulst Diagram x 10 1.5 1- System: N Real: -9.08e-005 0.5- Imag: -5.62e-006 Frequency (rad/sec): -104 -0.5 -15 -1.5 0.5 0.5 1.5 1 2.5 3.5 Real Axis x 10 Figure Q5(b) K If the transfer function of the system is given as G(s) (s+10)(s+50)(s+150) determine the following: The closed loop stability of the system using Nyquist Stability Criterion. i) ii) Gain margin and phase...

  • Compensator Plant 100 R(s) sta Y(s) For the unity feedback system shown in Fig. 3.55, specify t...

    Compensator Plant 100 R(s) sta Y(s) For the unity feedback system shown in Fig. 3.55, specify the gain and pole location of the compensator so that the overall closed-loop response to a unit- step input has an overshoot of no more than 30%, and a 2% settling time of no more than 0.2 sec. Verify your design using Matlab. 3.27 Compensator Plant 100 R(s) sta Y(s) For the unity feedback system shown in Fig. 3.55, specify the gain and pole...

  • A unity feedback system with the forward transfer function G)2)(s +5) is operating with a closed-...

    A unity feedback system with the forward transfer function G)2)(s +5) is operating with a closed-loop step response that has 15% overshoot. Do the following: a) Evaluate the settling time for a unit step input; b) Design a PD control to yield a 15% overshoot but with a threefold reduction in settling time; c) Evaluate the settling time, overshoot, and steady-state error with the PD control. A unity feedback system with the forward transfer function G)2)(s +5) is operating with...

  • A unity feedback control system has the open loop TF as

    A unity feedback control system has the open loop TF as: \(G(s)=\frac{K(s+a+1)(s+b)}{s(s+a)(s+a+2)}\)a) Find analytical expressions for the magnitude and phase response for \(\mathrm{G}(\mathrm{s}) .\left[K=K_{1}\right]\)b) Make a plot of the log-magnitude and the phase, using log-frequency in rad/s as the ordinate. \(\left[K=K_{1}\right]\)c) Sketch the Bode asymptotic magnitude and asymptotic phase plots. \(\left[K=K_{1}\right]\)d) Compare the results from \((a),(b)\), and \((c) .\left[K=K_{1}\right]\)e) Using the Nyquist criterion, find out if system is stable. Show your steps. \(\left[K=K_{1}\right]\)f) Using the Nyquist criterion, find the range...

  • A unity feedback system with the forward transfer function G(s)=K/(s+1)(s+3)(s+6) is operating wi...

    A unity feedback system with the forward transfer function G(s)=K/(s+1)(s+3)(s+6) is operating with a closed-loop step response that has 15% overshoot. Do the following: a) Evaluate the steady-state error for a unit step input b) Design a PI control to reduce the steady-state error to zero without affecting its transient response c) Evaluate the steady-state error and overshoot for a unit step input to your compensated system A unity feedback system with the forward transfer function G(s) is operating with...

  • A unity feedback system with the forward transfer function G (s) = s(s+2)(s15) is operating with ...

    A unity feedback system with the forward transfer function G (s) = s(s+2)(s15) is operating with a closed-loop step response that has 15% overshoot. Do the following: a) Evaluate the settling time for a unit step input b) Design a PD control to yield a 15% overshoot but with a threefold reduction in settling time; c) Evaluate the settling time, overshoot, and steady-state error with the PD control. A unity feedback system with the forward transfer function G (s) =...

  • Can I get Hwlp on a and b on MATLAB as soon as possible pleeaase K...

    Can I get Hwlp on a and b on MATLAB as soon as possible pleeaase K G(S) = S2 + 3s +10 a) Obtain the step response of the system with a PD (proportional and differential) cascade controller with gain 80 and a zero at -5. b) Obtain the step response of the system with a PD (proportion differential) feedback controller with a zero at -5 and unity gain and a forward gain of 80. c) Using Gc(s)G(s), create Nyquist...

  • Discuss the mathematical requirements for stability in a linear feedback system and state the Rou...

    Discuss the mathematical requirements for stability in a linear feedback system and state the Routh Stability criterion. (6 marks) (a) The open loop transfer function of a control system with unity feedback is given by: (b) 35 s(1 + Ts) (1 +0.25s) G(s) - Use Routh's criterion to determine the value of T for which the closed loop system is marginally stable. (8 marks) i Use the Nyquist criterion to confirm the values obtained in (i). (8 marks) ii Sketch...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT