Question

Ignore damping forces. A mass of 4 kg is attached to a spring with constant k- 16 N/m, then the spring is stretched 1 m beyon

0 0
Add a comment Improve this question Transcribed image text
Answer #1

diferential equation teh thム/Moten te Usin de t

7 es 124 Poued 277 2.

Solutien MA 千 4 17

Add a comment
Know the answer?
Add Answer to:
Ignore damping forces. A mass of 4 kg is attached to a spring with constant k- 16 N/m, then the s...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A -kg mass is attached to a spring with stiffness 10 N/m. The damping constant for the system is ...

    A -kg mass is attached to a spring with stiffness 10 N/m. The damping constant for the system is 2 4 N-sec/m. If the mass is moved - m to the left of equilibrium and given an initial rightward velocity of - m/sec, determine the equation of motion of the mass and give its damping factor, quasiperiod, and quasifrequency. What is the equation of motion? 15 2 (Type an exact answer, using radicals as needed.) A -kg mass is attached...

  • 8 Až kg mass is attached to a spring with stiffness 16 N/m. The damping constant...

    8 Až kg mass is attached to a spring with stiffness 16 N/m. The damping constant for the system is 2 N-sec/m. If the mass is moved 15 m to the left of equilibrium and 56 given an initial leftward velocity of 15 m/sec, determine the equation of motion of the mass and give its damping factor, quasiperiod, and quasifrequency. What is the equation of motion? y(t) = 1 (Type an exact answer, using radicals as needed.)

  • A-kg mass is attached to a spring with stiffness 40 N/m. The damping constant for the...

    A-kg mass is attached to a spring with stiffness 40 N/m. The damping constant for the system is 2 N-sec/m. If 15 the mass is moved 8 - m to the left of equilibrium and given an initial leftward velocity of į m/sec, determine the equation of motion of the mass and give its damping factor, quasiperiod, and quasifrequency. What is the equation of motion? y(t) = (Type an exact answer, using radicals as needed.) The damping factor is The...

  • A spring with a mass of 2 kg has a damping constant 14 kg/s. A force...

    A spring with a mass of 2 kg has a damping constant 14 kg/s. A force of 3.6 N is required to keep the spring stretched 0.3 m beyond its natural length. The spring is stretched 0.6 m beyond its natural length and then released. Find the position of the mass at any time t. (Assume that movement to the right is the positive x-direction and the spring is attached to a wall at the left end.)

  • A 4-kg mass is attached to a spring with stiffness 112 N/m. The damping constant for...

    A 4-kg mass is attached to a spring with stiffness 112 N/m. The damping constant for the system is 16/7 N-sec/m. If the mass is pulled 20 cm to the right of equilibrium and given an initial rightward velocity of 2 m/sec, what is the maximum displacement from equilibrium that it will attain? 1 -2/7 617 1 (2+.4/7) 67 2+ meters. The maximum displacement is e (Type an exact answer, using radicals as needed.) A 4-kg mass is attached to...

  • A spring with a mass of 2 kg has a damping constant 14 kg/s. A force of 3.6 N is required to keep...

    A spring with a mass of 2 kg has a damping constant 14 kg/s. A force of 3.6 N is required to keep the spring stretched 0.3 m beyond its natural length. The spring is stretched 0.6 m beyond its natural length and then released. Find the position of the mass at any time t. (Assume that movement to the right is the positive x-direction and the spring is attached to a wall at the left end.)

  • 12 Az-kg mass is attached to a spring with stiffness 25 N/m. The damping constant for...

    12 Az-kg mass is attached to a spring with stiffness 25 N/m. The damping constant for the system is 4 N-sec/m. If the mass is moved m to the left of equilibrium and given an initial 5 5 rightward velocity of 19 m/sec, determine the equation of motion of the mass and give its damping factor, quasiperiod, and quasifrequency. kg What is the equation of motion? y(t) = (Type an exact answer, using radicals as needed.) The damping factor is

  • A 1-kg mass is attached to a spring with stiffness 10 N/m. The damping constant for...

    A 1-kg mass is attached to a spring with stiffness 10 N/m. The damping constant for the system is 7 N-sec/m. If the mass is pulled^ m to the left of equilibrium and given an initial rightward velocity of 4 m/sec a) Find and solve the equation of motion governing the system b) State the type of motion for the system? c) When will the mass first return to its equilibrium position?

  • 8 1 A--kg mass is attached to a spring with stiffness 20 N/m. The damping constant...

    8 1 A--kg mass is attached to a spring with stiffness 20 N/m. The damping constant for the system is 2 N-sec/m. If the mass is moved 4 quasiperiod, and quasifrequency. m/sec, determine the equation of motion of the mass and give its damping factor, 88 m to the left of equilibrium and given an initial leftward velocity of 15 15 What is the equation of motion? y(t) = (Type an exact answer, using radicals as needed.) The damping factor...

  • (1 point) A spring with an m-kg mass and a damping constant 8 (kg/s) can be...

    (1 point) A spring with an m-kg mass and a damping constant 8 (kg/s) can be held stretched 1 meters beyond its natural length by a force of 5 newtons. If the spring is stretched 2 meters beyond its natural length and then released with zero velocity, find the mass that would produce critical damping. m = 80 kg

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT