Question

Problem 1. A unity feedback system with forward transfer function G(s) is operating with a closed-loop step response that has

0 0
Add a comment Improve this question Transcribed image text
Answer #1

PD desl Root leuws ola tinds to o RL NRLRL 2s -8 NRL No-Root lee P- 2 p-2 3ga Root lous MPy. よ20,5少. in ipo 2 2. 2 5) = 2.511 カて ごO 45 6.45 ㅆ.dar.ナem esiざれ *f g.bXg-6322.4 ヒ1615-23PD design e3.4 174 s (s 802)Conbratey Ad SunDate Page No

Add a comment
Know the answer?
Add Answer to:
Problem 1. A unity feedback system with forward transfer function G(s) is operating with a closed...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A unity feedback system with the forward transfer function G)2)(s +5) is operating with a closed-...

    A unity feedback system with the forward transfer function G)2)(s +5) is operating with a closed-loop step response that has 15% overshoot. Do the following: a) Evaluate the settling time for a unit step input; b) Design a PD control to yield a 15% overshoot but with a threefold reduction in settling time; c) Evaluate the settling time, overshoot, and steady-state error with the PD control. A unity feedback system with the forward transfer function G)2)(s +5) is operating with...

  • A unity feedback system with the forward transfer function G (s) = s(s+2)(s15) is operating with ...

    A unity feedback system with the forward transfer function G (s) = s(s+2)(s15) is operating with a closed-loop step response that has 15% overshoot. Do the following: a) Evaluate the settling time for a unit step input b) Design a PD control to yield a 15% overshoot but with a threefold reduction in settling time; c) Evaluate the settling time, overshoot, and steady-state error with the PD control. A unity feedback system with the forward transfer function G (s) =...

  • A unity feedback system with the forward transfer function G(s)=K/(s+1)(s+3)(s+6) is operating wi...

    A unity feedback system with the forward transfer function G(s)=K/(s+1)(s+3)(s+6) is operating with a closed-loop step response that has 15% overshoot. Do the following: a) Evaluate the steady-state error for a unit step input b) Design a PI control to reduce the steady-state error to zero without affecting its transient response c) Evaluate the steady-state error and overshoot for a unit step input to your compensated system A unity feedback system with the forward transfer function G(s) is operating with...

  • PROBLEM: A unity feedback system with the forward transfer function K G(s) s(s+7) is operating with...

    PROBLEM: A unity feedback system with the forward transfer function K G(s) s(s+7) is operating with a closed-loop step response that has 15% overshoot. Do the following: a. Evaluate the steady-state error for a unit ramp input. b. Design a lag compensator to improve the steady-state error by a factor of 20. c. Evaluate the steady-state error for a unit ramp input to your compensated system. d. Evaluate how much improvement in steady-state error was realized.

  • 1. Consider a unity feedback control system with the transfer function G(s) = 1/[s(s+ 2)] in...

    1. Consider a unity feedback control system with the transfer function G(s) = 1/[s(s+ 2)] in the forward path. (a) Design a proportional controller that yields a stable system with percent overshoot less that 5% for the step input (b) Find settling time and peak time of the closed-loop system designed in part (a); (c) Design a PD compensator that reduces the settling time computed in (b) by a factor of 4 while keeping the percent overshoot less that 5%...

  • Problem 4. The open-loop transfer function of a unity feedback system is 20 G(s) S+1.5) (s +3.5) ...

    Problem 4. The open-loop transfer function of a unity feedback system is 20 G(s) S+1.5) (s +3.5) (s +15) (a) Design a lag-lead compensator for G(s) using root locus so that the closed-loop system satisfies the design specifications. (b) Design a PID compensator for G(s) using root locus so that the closed-loop system satisfies the design specifications. Design specifications -SSE to a unit step reference input is less than 0.02. Overshoot is less than 20%. Peak time is less than...

  • Problem 5 (15 points) A unity negative feedback closed-loop system has the closed- loop transfer function...

    Problem 5 (15 points) A unity negative feedback closed-loop system has the closed- loop transfer function given below. (s + 4) G (5) " (s +50) (s + 2)(s + 5) Compute the percent overshoot and rise time of the step response. Process D(3) GE) HX) Figure 1.

  • Problem 4. The open-loop transfer function of a unity feedback system is: 20 (s+1.5)(s 3.5) (s 15...

    Problem 4. The open-loop transfer function of a unity feedback system is: 20 (s+1.5)(s 3.5) (s 15) G(s) (a) Design a lag-lead compensator for G(s) using root locus so that the closed-loop system satisfies the design specifications (b) Design a PID compensator for G (s) using root locus so that the clos ed-loop system satisfies the design specifications. Design specifications .SSE to a unit step reference input is less than 0.02. Overshoot is less than 20% Peak time is less...

  • VHQ-2, Problem 2: A negative unity feedback system with a forward path transfer function Ka K...

    VHQ-2, Problem 2: A negative unity feedback system with a forward path transfer function Ka K (Tm8+1) for some scalar gains Ka, K and time constantTm of Write down the system's transfer function. Assuming that K-2, find the values of Ka and Tm so that the system has the fastest response to a step input with no overshoot and a settling time of 0.2 seconds

  • 1. A unity feedback system with its forward transfer function G(s) - K(s+a)/s(s+B) is to be...

    1. A unity feedback system with its forward transfer function G(s) - K(s+a)/s(s+B) is to be designed to meet the following requirements: (1) the steady-state error for a unit ramp input equals to 0.1 and (2) the closed-loop poles will be located at -1 + j1. Find K, a, and B in order to meet the specifications. (12 points) 2. Given a unity feedback system with its forward transfer function G(s) shown below: s" (s +a) Find the values of...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT