Question

Approximating derivatives f(z +h) - f(z) f(x)-f( -h) f(x + h) - f(x - h) Forward difference Backward difference Centered diff2. Write a short program that uses formulas (1), (3) and (4) to approximate f(1) and f(1) for f(x)e with h 1, 2-1, 2-2,.., 2

Added the formulas, thank you!

Approximating derivatives f(z +h) - f(z) f(x)-f( -h) f(x + h) - f(x - h) Forward difference Backward difference Centered difference for 1st derivative s(a) (3) 2h t)-2e-bCentered diference for 2nd derivative (4) 2
2. Write a short program that uses formulas (1), (3) and (4) to approximate f(1) and f"(1) for f(x)e with h 1, 2-1, 2-2,.., 2-60. Format your output in columns as follows: h (6+f)() error (öf(1 error f error Indicate the values of h (in each coln) that give the least error (where, as usual, the error is the absolute δ f) (1) error (52 f)(1 value of the difference between the exact value, of the derivative, and the approximate value)
0 0
Add a comment Improve this question Transcribed image text
Answer #1

IL60 ttん

Add a comment
Know the answer?
Add Answer to:
Approximating derivatives f(z +h) - f(z) f(x)-f( -h) f(x + h) - f(x - h) Forward difference Backw...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Approximating derivatives

    Approximating derivatives$$ \begin{aligned} f^{\prime}(x) & \approx\left(\delta_{+} f\right)(x)=\frac{f(x+h)-f(x)}{h} & \text { Forward difference } \\ f^{\prime}(x) & \approx\left(\delta_{-} f\right)(x)=\frac{f(x)-f(x-h)}{h} & \text { Backward difference } \\ f^{\prime}(x) & \approx(\delta f)(x)=\frac{f(x+h)-f(x-h)}{2 h} & \text { Centered difference for 1st derivative } \\ f^{\prime \prime}(x) & \approx\left(\delta^{2} f\right)(x)=\frac{f(x+h)-2 f(x)+f(x-h)}{h^{2}} & \text { Centered difference for 2nd derivative } \end{aligned} $$1. a. Use Taylor's polynomials to derive the centered difference approximation for the first derivative:$$ f^{\prime}(x) \approx \delta f(x)=\frac{f(x+h)-f(x-h)}{2 h}, $$include the error in...

  • 4. For f(x) = e-* and h = 0.10 where, C = 1.** a) Use centered...

    4. For f(x) = e-* and h = 0.10 where, C = 1.** a) Use centered approximations to estimate the first and second derivatives of f(x) at x = 2. Use the east accurate formulas available. (10 pts) b) Using the most acurate forward and backward difference formulas, estimate the first derivative of f(x) at x 2. (10 pts) Forward Difference First Derivative 7.) - SD Error OM or) = -1.) + 40..) - 3 ) 2h Second Derivative 'w...

  • 3. For f(x) = e-x and h = 0.6

    3. For f(x) = e-x and h = 0.6 a) Use forward and backward difference approximations to estimate the second derivatives of f(x) at x = 2. Use the least accurate formulas available.b) Using the most accurate centered difference formula, estimate the second derivative of f(x) at x=2. 

  • 1. Approximate the derivative of each of the following functions using the forward, backward, and...

    1. Approximate the derivative of each of the following functions using the forward, backward, and centered differ- ence formulas on the grid linspace (-5,5,100) (x+h)-f(z thforward, (r)-fr-h ckward th)-fle-h centered. For each part, make a single plot (with three curves) showing the absolute error at each grid point. (Note that the approximations are undefined at one or both endpoints.) Also state which approximations are exact (within roundoff error) (b) f:x→z? (d) f:Hsin(x) 2. Use the centered difference formula to approximate...

  • Use centered,backward and forward difference approximations to estimate the first derivatives of ...

    use centered,backward and forward difference approximations to estimate the first derivatives of y=e^(3x) at x=1 for h=0.1 with accuracy of second order. Compare results with the analytical computations. 3. Use Centered, Backward and Forward Difference approximations to estimate the first derivatives ofy e3xatx 1 for h 0.1 with accuracy ofsecond order. Compare results with the analytical computations 3. Use Centered, Backward and Forward Difference approximations to estimate the first derivatives ofy e3xatx 1 for h 0.1 with accuracy ofsecond order....

  • Use forward and backward difference approximations of O(h)

    Use forward and backward difference approximations of O(h) and a centered difference approximation of O(h2) to estimate the first derivative of the following function:f(x)=25x³-6x²+7x-88Evaluate the derivative at x=2 using a step size of h=0.25. Compare your results with the true value of the derivative. Interpret your results on the basis of the remainder term of the Taylor series expansion.

  • . (25 points) The recurrence relation for the Newton's Raphson method is a)0.1.2 f(r.) F(z.) The ...

    . (25 points) The recurrence relation for the Newton's Raphson method is a)0.1.2 f(r.) F(z.) The derivative of the function can be approximately evaluated using finite-difference method. Consider the Forward and Centered finite-difference formulas Forward Finite-Difference Centered Finite-Difference 2h It is worthwhile to mention that modified secant method was derived based on the forward finite- difference formula. Develop a MATLAB functions that has the following syntax function [root,fx,ea,iter]-modnetraph (func,x0,h,es,maxit,sethod, varargin) % modnevtraph: root location zeroes of nonlinear equation f (x)...

  • 2. Use the centered difference formula to approximate f(z) for f sin and z1, using h 1, 1/10, 1/1...

    2. Use the centered difference formula to approximate f(z) for f sin and z1, using h 1, 1/10, 1/100, ...., 1 /1015. Plot the absolute error. Explain the behavior as h decreases. (Hint: Read the last subsection of §11 concerning roundoff error.) Why does this instability not arise with -0? 2. Use the centered difference formula to approximate f(z) for f sin and z1, using h 1, 1/10, 1/100, ...., 1 /1015. Plot the absolute error. Explain the behavior as...

  • 3. A five-point centered finite difference approximation to the first derivative is given by - f...

    3. A five-point centered finite difference approximation to the first derivative is given by - f (x + 2h) +8f (x + h) – 8f (x – h) + f(x – 2h) 12h (a) What is the error term associated with this formula? (b) Numerically verify the order of approximation using f(x) = (1 + x2)-1 at x = 1 using the values h = 0.1, 0.01, 0.001.

  • 1. Use the forward-difference formulas and backward-difference formulas to determine each missing entry in the following...

    1. Use the forward-difference formulas and backward-difference formulas to determine each missing entry in the following tables. 0.0 0.00000 0.2 0.74140 0.4 1.3718 xf(x) s(x) 0.3 1.9507 0.2 2.0421 -0.1 2.0601 MATH-321: INTRODUCTION TO NUMERICAL ANALYSIS 2·The data in Exercise 1 comes from functions f with second derivatives given as follows: (a) "(x)-e 4 Find error bounds using the error formulas. (b) (x)8 cos 2x

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT