Question

02: For the following closed loop system below: R(s) or L(s) = (s Bs ey draw the root locus stable a) and find the range ofk

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Lls S- 8)(9- c) Suppose, B and aee· Po ·itive Numbed and e>c BeCbuge in Question othin3 is ivon ganer ally Sblve d SB) (SC) kBCc オ DRAリ180 60、 P-2 6o, 180°, 300° ele1.4セ e ond ac th

Add a comment
Know the answer?
Add Answer to:
02: For the following closed loop system below: R(s) or L(s) = (s B's ey draw the root locus stab...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • QI: For the following closed loop system below: RCS — -*H 00 For each of the...

    QI: For the following closed loop system below: RCS — -*H 00 For each of the following open loop transfer function Ls): D) L(S) 842)(5) I L ) - +1 (5+1)(5+5)(5+) III) L(S) - 3421(+3) a) Draw the root locus and find the range of k for which the closed-loop system is stable. b) Find the value of k so that the system is marginally stable, and for that value, find the oscillation frequency of the time response. c) Find...

  • Problem 3 (25%): The closed-loop system has the block diagram shown below. Controlle Process Sensor s + l (a) (5%) Sketch the root locus of the closed-loop system. (b) (5%) Determine the range of...

    Problem 3 (25%): The closed-loop system has the block diagram shown below. Controlle Process Sensor s + l (a) (5%) Sketch the root locus of the closed-loop system. (b) (5%) Determine the range of K that the closed-loop system is stable. (c) (5%) Find the percentage of overshoot and the steady state error due to a unit step input of the open loop system process. (d) (5%) Find the steady-state error due to a unit step input of the closed-loop...

  • root locus

    4. Consider the system described by the following block diagram. In this block diagram \(G(s)=\frac{1}{s+1}, C(z)=\frac{K}{1-z^{-}}\) are the system model and the digital controller. (a) Sketch the root locus diagram of the system, \(C(z) G(z)\). (b) Determine the range of gain \(K\) for the stability using the root locus. (c) Determine the value of gain \(\mathrm{K}\) to get around \(10 \%\) maximum overshoot when a step input is applied using the root locus. Verify your results with plotting the closed...

  • yUCni ias the block diagram shown below. Controller Process Sensor (a) (5%) Sketch the root locus of the closed-loop system. (b) (5%) Determine the range of K that the closed-loop system is stabl...

    yUCni ias the block diagram shown below. Controller Process Sensor (a) (5%) Sketch the root locus of the closed-loop system. (b) (5%) Determine the range of K that the closed-loop system is stable. (c) (5%) Find the percentage of overshoot and the steady state error due to a unit step input of the open loop system process. (d) (5%) Find the steady-state error due to a unit step input of the closed-loop syste as a function of the design parameter...

  • For the system shown below, find the followings; (a) Make an accurate plot of the root locus (b) The value of K that gives a stable system with critically damped second-order poles (c ) The value...

    For the system shown below, find the followings; (a) Make an accurate plot of the root locus (b) The value of K that gives a stable system with critically damped second-order poles (c ) The value of K that gives a marginally stable sytems Cs) (s-20s- I) 0.5 The characteristic equation (denominator of the closed-loop trans fer function set equal to zero) is given by For the system shown below, find the followings; (a) Make an accurate plot of the...

  • Use rlocus in MATLAB to plot the root locus for a closed loop control system with the plant trans...

    Use rlocus in MATLAB to plot the root locus for a closed loop control system with the plant transfer function 8. z 2 2)2-0.1z +0.06 For what value of k is the closed loop system stable? 9. The characteristic equation for a control system is given as z2(0.2 +k)z 6k +2-0 Use Routh-Hurwitz criterion to find when the system is stable. 10. Use MATLAB to plot the root locus for the system given in Problem 9. Compare your conclusion in...

  • Question 2 System Stability in the s-Domain and in the Frequency Domain: Bode Plots, Root Locus...

    Question 2 System Stability in the s-Domain and in the Frequency Domain: Bode Plots, Root Locus Plots and Routh- Hurwitz Criterion ofStability A unit feedback control system is to be stabilized using a Proportional Controller, as shown in Figure Q2.1. Proportional Controller Process The process transfer function is described as follows: Y(s) G(s) s2 +4s 100 s3 +4s2 5s 2 Figure Q2.1 Your task is to investigate the stability of the closed loop system using s-domain analysis by finding: a)...

  • Problem 2 For the unity feedback system below in Figure 2 G(s) Figure 2. With (8+2) G(s) = (a) Sk...

    Problem 2 For the unity feedback system below in Figure 2 G(s) Figure 2. With (8+2) G(s) = (a) Sketch the root locus. 1. Draw the finite open-loop poles and zeros. ii. Draw the real-axis root locus iii. Draw the asymptotes and root locus branches. (b) Find the value of gain that will make the system marginally stable. (c) Find the value of gain for which the closed-loop transfer function will have a pole on the real axis at s...

  • Root Locus: Consider the following system

    Root Locus: Consider the following system (a) What are the poles of the open loop system (locations of the open loop poles)? What are zeros of the open loop system (locations of the zeros)?  (b) What is the origin of the asymptotes?  (c) What are the angles of asymptotes?  (d) Find the break-away and break-in points.  (e) Find the angles of departure for all the poles.  (f) Draw the root locus plot of G(s).  (g) For what values of K is the closed loop system stable? 

  • [7] Sketch the root locus for the unity feedback system whose open loop transfer function is K G(s) Draw the root lo...

    [7] Sketch the root locus for the unity feedback system whose open loop transfer function is K G(s) Draw the root locus of the system with the gain Kas a variable. s(s+4) (s2+4s+20) Determine asymptotes, centroid, breakaway point, angle of departure, and the gain at which root locus crosses ja-axis. A control system with type-0 process and a PID controller is shown below. Design the [8 parameters of the PID controller so that the following specifications are satisfied. =100 a)...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT