Question

Suppose the signal x[n] = δ[n-1] + cos(nn/6+ π/4) is input to the LTI system described by the equation y[n][n] +r|n - 0.5yn -

0 0
Add a comment Improve this question Transcribed image text
Answer #1

e an) > ow the n) beComes +D.SCh- use the 2 37)一0.SZ-t て-| e. n-2 COS nen

Add a comment
Know the answer?
Add Answer to:
Suppose the signal x[n] = δ[n-1] + cos(nn/6+ π/4) is input to the LTI system described by the equation y[n][n] +r|n - 0.5yn -. Determine a closed-form expression for yn] Suppose the signal x[n]...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • (20 pts.) Determine the response of the system described by the difference equation 7. 1 1 y(n) yn 1)n2)x(n) n for inpu...

    (20 pts.) Determine the response of the system described by the difference equation 7. 1 1 y(n) yn 1)n2)x(n) n for input signal x(n) = (;) u(n) under the following initial conditions y(-1) 1, y-2) 0.5 (20 pts.) Determine the response of the system described by the difference equation 7. 1 1 y(n) yn 1)n2)x(n) n for input signal x(n) = (;) u(n) under the following initial conditions y(-1) 1, y-2) 0.5

  • Consider a DT system with input x[n] and output y[n] described by the difference equation 4y[n+1]...

    Consider a DT system with input x[n] and output y[n] described by the difference equation 4y[n+1]+y[n-1]=8x[n+1]+8x[n] 73 Consider a DT system with input xin and output yin] described by the difference equation (a) What is the order of this system? (b) Determine the characteristic mode(s) of the system (c) Determine a closed-form expression for the system's impulse response hln]. 73 Consider a DT system with input xin and output yin] described by the difference equation (a) What is the order...

  • The given input signal for 2.7.2 is:   x(t) = 3 cos(2 π t) + 6 sin(5 π t). Plz explain ...

    The given input signal for 2.7.2 is:   x(t) = 3 cos(2 π t) + 6 sin(5 π t).Plz explain steps.Given a causal LTI system described by the differential equation find \(H(s),\) the \(\mathrm{ROC}\) of \(H(s),\) and the impulse response \(h(t)\) of the system. Classify the system as stable/unstable. List the poles of \(H(s) .\) You should the Matlab residue command for this problem.(a) \(y^{\prime \prime \prime}+3 y^{\prime \prime}+2 y^{\prime}=x^{\prime \prime}+6 x^{\prime}+6 x\)2.7.2 The signal \(x(t)\) in the previous problem is...

  • (2) Consider the causal discrete-time LTI system with an input r (n) and an output y(n)...

    (2) Consider the causal discrete-time LTI system with an input r (n) and an output y(n) as shown in Figure 1, where K 6 (constant), system #1 is described by its impulse response: h(n) = -36(n) + 0.48(n- 1)+8.26(n-2), and system # 2 has the difference equation given by: y(n)+0.1y(n-1)+0.3y(n-2)- 2a(n). (a) Determine the corresponding difference equation of the system #1. Hence, write its fre- quency response. (b) Find the frequency response of system #2. 1 system #1 system #2...

  • (20 pts.) Determine the output sequence of the system with impulse response h[n] 6. u[n] when the input signal is x[n]...

    (20 pts.) Determine the output sequence of the system with impulse response h[n] 6. u[n] when the input signal is x[n] = 2e-n + sin(nn)- 2, -co <n< 0o. 7. (20 pts.) Determine the response of the system described by the difference equation 1 1 y(n)y(n1)n2)x(n 8 7 for input signal x(n) u(n) under the following initial conditions 1, y(-2) 0.5 y(-1) (20 pts.) Determine the output sequence of the system with impulse response h[n] 6. u[n] when the input...

  • A causal discrete-time LTI system is described by the equation

    A causal discrete-time LTI system is described by the equationwhere z is the input signal, and y the output signal y(n) = 1/3x(n) + 1/3x(n -1) + 1/3x(n - 2) (a) Sketch the impulse response of the system. (b) What is the dc gain of the system? (Find Hf(0).) (c) Sketch the output of the system when the input x(n) is the constant unity signal, x(n) = 1. (d) Sketch the output of the system when the input x(n) is the unit step signal, x(n)...

  • For the LTI system with the difference equation y[n] = 0.25x[n] +0.5x[n-1] + 0.25x[n-2] a. Find...

    For the LTI system with the difference equation y[n] = 0.25x[n] +0.5x[n-1] + 0.25x[n-2] a. Find the impulse response h[n] (this is y[n] when x[n] = δ[n] ) b. Find the frequency response function H(?^?ω). Your result should be in the form of A(?^?θ(?) )[cos(αω)+β]. Specify values for A, ?(?), α,and β c. Evaluate H(?^?ω) for ω = π , π/2 , π/4, 0, -π/4, - π/2, -π d. Plot H(?^?ω) in magnitude and phase for –π < ω <...

  • Determine the difference equation relating the input (x[n]) and outpt (y[n])

    (a) Determine the difference equation relating the input (x[n]) and outpt (y[n]) for an LTI system whose impulse response is given by: h(n) = (1/4){δ(n) + δ(n - 1) (b) Find and plot the amplitude and phase response of the above LTI system. Indicate what kind of filter this system represents.

  • Consider a causal LTI system whose input xn] and output y[n] are related by the differenoe equati...

    Consider a causal LTI system whose input xn] and output y[n] are related by the differenoe equation yn In--n] a. Find the impulse response of the system (without using any transform). (5 marks) b. Using convolution determine yin, 1f XIn = 1 un.(6 marks Consider a causal LTI system whose input xn] and output y[n] are related by the differenoe equation yn In--n] a. Find the impulse response of the system (without using any transform). (5 marks) b. Using convolution...

  • sin(r(n-18/6) r(n-18) n#18 if Consider an LTI discrete-time system that has impulse response h[n] = if...

    sin(r(n-18/6) r(n-18) n#18 if Consider an LTI discrete-time system that has impulse response h[n] = if otherwise a) Determine the magnitude lH(Q)I and the phase response LH(Q) for-r < Ω < π. Enter Ω as "O" and enter the piecewise function H(S2) using the heaviside function. IH(Q)| = LH(S2) = b) Determine the output of the system, y[n], if the input is given by x[n] = δ[n-71+ cos(쮜. Enter your answer in terms of h[n]. y[n] = In your answers,...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT