Question

4.6. A 460-V, 75 kW, 4-pole, delta-connected, 60-Hz, three- phase induction motor has a full-load slip of 5 percent, an effic

0 0
Add a comment Improve this question Transcribed image text
Answer #1

efpicie 72 Nou Test Test 333-71 v 333.7/ 1人) onr3t.+ V0jzyL0f.nentu. Sv Now SHOT ON REDMI NOTE5 PRO 2 MI DUAL CAMERA5.XTけて-- 882A 509.22 A 509 22 @.f6)다亡 81 37.8 A ·ㄅ SHOT ON REDMI NOTE5 PRO MI DUAL CAMERA

Add a comment
Know the answer?
Add Answer to:
4.6. A 460-V, 75 kW, 4-pole, delta-connected, 60-Hz, three- phase induction motor has a full-load slip of 5 percent, an efficiency of 92 percent and a power-factor of 0.87 lagging at full-load. At st...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • 4. A certain four-pole 240-V-rms 50-Hz delta-connected three-phase induction motor operates at slip 5% at full...

    4. A certain four-pole 240-V-rms 50-Hz delta-connected three-phase induction motor operates at slip 5% at full load and has rotational losses (windage + friction) of 100 W. The stator resistance per phase is 0.2 Ohm. The results of no-load and locked-rotor tests on this motor are as follows: No-load test Locked-rotor test Line-to-line input voltage: 240 V 45 V Input active power: 1100 W 1300 W Input line current: 10 A 30 A Using the tests data, determine parameters of...

  • Question 2 [10 marks) A six pole, three phase induction motor, with a star connected stator...

    Question 2 [10 marks) A six pole, three phase induction motor, with a star connected stator winding is energised from a 380V, 50Hz supply. The ratio of the stator to rotor turns is assumed 1.8 and a full load slip of 4%. If the respective per phase rotor resistance and standstill reactance are 0.120 and 0.8502, determine: a. Torque developed at full load b. The maximum torque and the speed at maximum torque

  • . A 460-V 460-V, 25-hp, 60-Hz, six-pole, Y-connected induction motor has the following impedanc ohms per...

    . A 460-V 460-V, 25-hp, 60-Hz, six-pole, Y-connected induction motor has the following impedanc ohms per phase referred to the stator circuit. Ri= 0.212 R2 = 0.282 X1 = 1.055 12 X2 = 1.055 22 XM = 33.9 W The total rotational losses are 1100 W and are assumed to be constant. The core loss is lumped with the rotational losses. For a rotor slip of 4% at the rated voltage and rated frequency, a) The input power b) Peony...

  • 5. A 208-V four-pole 60-Hz Y-connected wound-rotor induction motor is rated at 30 hp. Its equivalent...

    5. A 208-V four-pole 60-Hz Y-connected wound-rotor induction motor is rated at 30 hp. Its equivalent circuit components are R=0.100 Ry=0.070. X - 10.00 R = 250 X; -0.2100 X=0.21002 Praw=500 W P =0.5% of input at full load For a slip of 0.05, find (a) The line current (b) The induced voltage in the rotor (c) The stator power factor (d) The rotor power factor (e) The rotor frequency (f) The stator copper losses (g) The core loss (h)...

  • A 3-phase, 460 V, 1740 rpm, 60 Hz, 4-pole wound-rotor induction motor has the following parameters...

    A 3-phase, 460 V, 1740 rpm, 60 Hz, 4-pole wound-rotor induction motor has the following parameters per phase: R1 = 0.25 Ω, ' 2R = 0.2Ω, ' 1 2 X = X = 0.5Ω, 30 m X = Ω. The rotational losses are 1700 W. With the rotor terminals short-circuited, find: 1. at starting: • current when started direct on full voltage, • a torque 2. at full load: • slip • current • ratio of starting current to full-load...

  • 1. A 15 hp, 4 pole, 208 V, 60 Hz, Y-connected, three-phase squirrel cage induction motor has the ...

    1. A 15 hp, 4 pole, 208 V, 60 Hz, Y-connected, three-phase squirrel cage induction motor has the following parameters in Ω/phase referred to the stator: R,-0.220, Xi = 0.430, X,-15.0, R2 0.130 and X2-0.430. Mechanical and core losses amount to 300 W and 200 W respectively for rated voltage. (a) The motor is fed with a 60 Hz, 208 V voltage. It runs with a slip of 4.5 %. Find the speed, shaft torque and power, efficiency and power...

  • A three phase induction motor draws a starting current which is five times the full load...

    A three phase induction motor draws a starting current which is five times the full load current with direct on line starting, while developing twice the full load torque. Q2.1. Based on the two facts that starting current is proportional to the applied voltage and that the starting torque is proportional to the square of the applied voltage, determine voltage (as a per cent of rated voltage) required to obtain a starting torque equalling the full load torque. (10 marks)...

  • A 50-KW, 220V, 50 Hz, squirrel-cage three-phase induction motor is needed to rotate a mine conveyor...

    A 50-KW, 220V, 50 Hz, squirrel-cage three-phase induction motor is needed to rotate a mine conveyor belt drive. The motor starts sometimes under load, but most of the time is needed to run at rated speed and slip of 3.5%. (a) Propose an appropriate design of this drive motor in order to suit the application. Motivate and then illustrate your design with suitable drawings and speed (slip)-torque graphs. [12] (b) If the supply voltage of the motor in (a) above...

  • 5 Marks) A 4-pole, 3 phase, 50 Hz, 230 V induction motor. Each phase of rotor winding b) has one-fourth the number of t...

    5 Marks) A 4-pole, 3 phase, 50 Hz, 230 V induction motor. Each phase of rotor winding b) has one-fourth the number of turns of each stator. The full-load speed is 1,455 rpm. The rotor resistance is 0.3 Ω and rotor standstill reactance is 1.0 Ω per phase. The rotor and stator windings are similar. Stator losses are equal to 50 Watts. Friction and windage losses are equal to 30 W. Calculate ) Blocked rotor voltage per phase. 2 Marks)...

  • Q3. A single-phase, 120 V, 60 Hz, four-pole, split-phase induction motor has the following equivalent circuit...

    Q3. A single-phase, 120 V, 60 Hz, four-pole, split-phase induction motor has the following equivalent circuit parameters: Stator parameters: The Main winding (R =1.512, X=2.522), and the auxiliary winding (R=2.512, X=2.52), Rotor parameters referred to the stator side: (R=1N, X=1.592). The magnetizing reactance is equal to 4082. (a)Determine the standstill impedances of both windings. (b)Determine the starting torque and the starting current of the motor if it is started from rated voltage mains as a split phase induction motor. (c)Determine...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT