Question
how did we get the following equation (1.9) from maxwells equations


at e at where p is the density of free charges and j is the density of currents at a point where the electric and magnetic fi
0 0
Add a comment Improve this question Transcribed image text
Answer #1

C212

Add a comment
Know the answer?
Add Answer to:
how did we get the following equation (1.9) from maxwells equations at e at where p is the density of free charges and j is the density of currents at a point where the electric and magnetic fie...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • We know from electrostatics that if we have a scalar electrostatic potential V, then there exists an electric field tha...

    We know from electrostatics that if we have a scalar electrostatic potential V, then there exists an electric field that satisfies: Of course, not all vector fields can be written as the gradient of a scalar function. (a) Show that the electric field given below is not the result of an electrostatic potential. E(x, y, z) = ( 3.0m,2 ) ( yi-TJ (b) Just because this electric field can't come from an electrostatic potential, it doesn't mean it can't exist...

  • Question 1. (a) Write down the differential form of Maxwell's equations in matter for the dynamic...

    Question 1. (a) Write down the differential form of Maxwell's equations in matter for the dynamic case (where the electric and magnetic field can change with time), in the presence of free charges and currents. Describe all physical quantities and constants used. [10] (6) (b) Write down the integral form of Ampere's law in vacuum for the static (non time- dependent) case. Using Stokes' theorem, derive the differential form of Ampere's law. [4] (c) Two charges 91= 5 uC and...

  • Consider a cylindrical capacitor like that shown in Fig. 24.6. Let d = rb − ra...

    Consider a cylindrical capacitor like that shown in Fig. 24.6. Let d = rb − ra be the spacing between the inner and outer conductors. (a) Let the radii of the two conductors be only slightly different, so that d << ra. Show that the result derived in Example 24.4 (Section 24.1) for the capacitance of a cylindrical capacitor then reduces to Eq. (24.2), the equation for the capacitance of a parallel-plate capacitor, with A being the surface area of...

  • need ans for the following questions, the last 3 pages for more info. Questions: more info:...

    need ans for the following questions, the last 3 pages for more info. Questions: more info: expermint e/m avr=1.71033*10^11 7 2 points of the following options, which conditions for V or I produce the largest radius of the electron beam path r? Hint: Use e/m= 2V (5/4)*aP/(Nuo Ir) Maximum land Maximum V O Maximum land Minimum V Minimum I and Maximum V Minimum I and Minimum V 8 2 points By what factor will change if the radius of the...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT