Question

M,R a = 0 14. A body consisted of an uniform rod of mass m and length L, and a disk of mass M and radius R can rotate about t

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Date (MR abaut paint inertaof YOd Moment about eaLt moment op inertia or dir mR ML+r)2 2 bom amk- Eneray theorm tih Pofo TotaPage No. Date fntral ngular final Anqulasr velocity Let Theh in Kehatic Ehargy change tala peliit O about irtet 1 2 TieLat 2Page No. Date Momen tum at verticel 2 m +M. 2 k 7L momen kum ef xocl Lincax m L 61 ut atise momuntum of LIhar MP MILtRu Lwt MPage No.: Date mgL+ 2 Mg (L R) mi2 +M 2

Add a comment
Know the answer?
Add Answer to:
M,R a = 0 14. A body consisted of an uniform rod of mass m and length L, and a disk of mass M and radius R can rotate a...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A system of two bodies consisting of a rod of mass m and length L, and a disk of mass M and radius R, moves in the x-y...

    A system of two bodies consisting of a rod of mass m and length L, and a disk of mass M and radius R, moves in the x-y plane. The disk rotates about the axis attached to the rod at a distance b from its axis of rotation. The absolute angular velocity of the rod is 2, and the angular velocity of the disk relative to the rod is @. Determine the ratio E/Ho of the kinetic energy E of...

  • Figure 3 Uniform disk Uniform rod 3) Figure 3 illustrates a physical pendulum comprising a uniform disk having mass M and radius R and a rod having the length R and mass M. The disk is pivotally m...

    Figure 3 Uniform disk Uniform rod 3) Figure 3 illustrates a physical pendulum comprising a uniform disk having mass M and radius R and a rod having the length R and mass M. The disk is pivotally mounted with a friction-less horizontal axis of rotation that extends through the center of mass of the disk. The rod is fixedly attached to the edge of the disk and it extends vertically downward when the pendulum is in a state of static...

  • (a) A uniform disk of mass 14 kg, thickness 0.5 m, and radius 0.4 m is located at the origin, oriented with its axis al...

    (a) A uniform disk of mass 14 kg, thickness 0.5 m, and radius 0.4 m is located at the origin, oriented with its axis along the y axis. It rotates clockwise around its axis when viewed from above (that is, you stand at a point on the +y axis and look toward the origin at the disk). The disk makes one complete rotation every 0.5 s. What is the rotational angular momentum of the disk? What is the rotational kinetic...

  • A uniform rod of length L (2.00 m) and mass M (5.00 Kg) is free to...

    A uniform rod of length L (2.00 m) and mass M (5.00 Kg) is free to rotate on a frictionless pin passing through one end. The rod is released from rest in the horizontal position, (a) What is its angular speed when the rod reaches its lowest position? (b) What arc the linear speed of the center of mass and that of the lowest point on the rod when it is in the vertical position?

  • [7.] A uniform rod with mass M, length L, and moment of inertial with respect to...

    [7.] A uniform rod with mass M, length L, and moment of inertial with respect to the center of mass Icm = MLis hinged at one end (point P) so that it can rotate, without friction, around a horizontal axis. The rod is initially held at rest forming an angle with the vertical (see figure) and then released. a) Find the moment of inertia Ip of the rod with respect to point P. b) Find the magnitude of the angular...

  • A rod of mass M and length 2L is free to rotate in a vertical plane...

    A rod of mass M and length 2L is free to rotate in a vertical plane about an axis through O, as shown in the figure. The axis is normal to the plane of the paper. Three mosses M, M, and 2M are attached to the rod as shown. With the rod in a horizontal position, the system is released from rest. (a) Find the net torque on the rod about the axis of rotation immediately after the system is...

  • 1a. A cockroach of mass m lies on the rim of a uniform disk of mass...

    1a. A cockroach of mass m lies on the rim of a uniform disk of mass 9.00 m that can rotate freely about its center like a merry-go-round. Initially the cockroach and disk rotate together with an angular velocity of 0.456 rad/s. Then the cockroach walks halfway to the center of the disk. (a) What then is the angular velocity of the cockroach-disk system? (b) What is the ratio K/K0 of the new kinetic energy of the system to its...

  • A uniform rod of mass M and length L is released from its horizontal position. The...

    A uniform rod of mass M and length L is released from its horizontal position. The rod pivots about a fixed frictionless axis at' onc end and rotates countcrclockwise duc to gravity. It collides and sticks to another rod with same length and mass which is ver- tically at rest. (For a rod with mass M and length L, the moment of inertia about an axis through its one end is given by1-ML) L,M L, M Initial Final (a)(5 pts.)...

  • A rod of length L and negligible mass is attached to a uniform disk of mass M and radius R (see figure below).

    A rod of length L and negligible mass is attached to a uniform disk of mass M and radius R (see figure below). A string is wrapped around the disk, and you pull on the string with a constant force F. Two small balls each of mass m slide along the rod with negligible friction. The apparatus starts from rest, and when the center of the disk has moved a distance d, a length of strings has come off the...

  • Calculate the angular momentum for a rotating disk, sphere, and rod. (a) A uniform disk of...

    Calculate the angular momentum for a rotating disk, sphere, and rod. (a) A uniform disk of mass 16 kg, thickness 0.5 m, and radius 0.9 m is located at the origin, oriented with its axis along the y axis. It rotates clockwise around its axis when viewed from above (that is, you stand at a point on the +y axis and look toward the origin at the disk). The disk makes one complete rotation every 0.7 s. What is the...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT