Question

1. Imagine that a particle can exist in one of the three states: |0 > , |1 >, |2> . We now consider 2 such part...

1. Imagine that a particle can exist in one of the three states: |0 > , |1 >, |2> . We now consider 2 such particles. How many distinguishable states are possible if the particles are (a) distinguishable (b) indistinguishable, classic (c) bosons (d) fermions. Write down the wave function of the system for all cases.

0 0
Add a comment Improve this question Transcribed image text
Answer #1

tewo porticles . A and B Comsider meteation) Neu no (assigned SStates (a) State dCA) B) p(A) B (B) AB AB AB YA) Y (B) A (A) YA B A B Stote AA dCA) (A) BLA) BCA AA A (A).YLA) BIA).YLA) AA State AB d(A) (B) BLA) BL3) AB A arB Go A A)TLO) pie) YAI A).Y)thumbs up please

If you have any doubt regarding this perticular question then ping me

Add a comment
Know the answer?
Add Answer to:
1. Imagine that a particle can exist in one of the three states: |0 > , |1 >, |2> . We now consider 2 such part...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • [1 44= 9 marks ] Question 5 Consider two identical particles in 1D which exist in single-particle (normalised) (x), and...

    [1 44= 9 marks ] Question 5 Consider two identical particles in 1D which exist in single-particle (normalised) (x), and are in such close proximity they can be considered as indistinguishable. wave functions /a(x) and (a) Write down the symmetrised two-particle wave function for the case where the particles are bosons (VB) and the case where the particles are fermions (Vp). (b) Show that the expectation value (xjr2)B,F is given by: (T122) в,F — (а:)a (х)ь + dx x y:(")...

  • 1. Consider a quantum system comprising three indistinguishable particles which can occupy only three individual-partic...

    1. Consider a quantum system comprising three indistinguishable particles which can occupy only three individual-particle energy levels, with energies ε,-0, ε,-2e and ε,-3. The system is in thermal equilibrium at temperature T. Suppose the particles are bosons with integer spin. i) How many states do you expect this system to have? Justify your answer [2 marks] (ii) Make a table showing, for each state of this system, the energy of the state, the number of particles (M, M,, N) with...

  • Systems with variable numbers of particles1 y Imagine a solid with sites on which particles can...

    Systems with variable numbers of particles1 y Imagine a solid with sites on which particles can be localized. Each site can have 0, 1, or 2 particles; each particle on the site can be in one of two states, Vior 42 with energy E, or €2. We neglect the interaction between particles even if they are localized on the same site. (a) Write down the grand partition function for one site if the particles are bosons, and deduce the grand...

  • Problem 1. Consider a system of three identical particles. Each particle has 5 quantum states with...

    Problem 1. Consider a system of three identical particles. Each particle has 5 quantum states with energies 0, ε, 2E, 3E, 4E. For distinguishable particles, calculate the number of quantum states where (1) three particles are in the same single-particle state, (2) only two particles are in the same single-particle state, and (3) no two particles are in the same single-particle state. Problem 2. For fermions, (1) calculate the total number of quantum states, and (2) the number of states...

  • Question 9 Consider a quantum system comprising two indistinguishable particles which can occupy only three individual-particle...

    Question 9 Consider a quantum system comprising two indistinguishable particles which can occupy only three individual-particle energy levels, with energies 81 0, 82 2 and E3 38.The system is in thermal equilibrium at temperature T. (a) Suppose the particles which can occupy an energy level. are spinless, and there is no limit to the number of particles (i) How many states do you expect this system to have? Justify your answer (ii) Make a table showing, for each state of...

  • Part B All this are multiple questions Part C Part D Part E Question 3 (MCQ...

    Part B All this are multiple questions Part C Part D Part E Question 3 (MCQ QUESTION) [8 Marks) A hypothetical quantum particle in 10 has a normalised wave function given by y(x) = a.x-1.b, where o and bare real constants and i = V-1. Answer the following: a) What is the most likely x-position for the particle to be found at? Possible answers forder may change in SAKAI 14] a - b + ib a 0 Question 3 (MCQ...

  • 2. Two noninteracting particles, each of mass m, are in the 1-D harmonic oscillator potential Describe...

    2. Two noninteracting particles, each of mass m, are in the 1-D harmonic oscillator potential Describe their ground state and the next two excited states, that is, their corresponding (i) wave functions, (i) energy eigenvalues, and (ii) degeneracies if two particles are (a) distinguishable particles, (b) the identical bosons, and (c) the identical fermions. 3. Suppose one particle is in the ground state, and the other is in the first excited state for tw particles described in Prob. 2. Calculate...

  • 1-r' Problem 16.12 (30 pts) This chapter examines the two-state system but consider instead the infinite-state...

    1-r' Problem 16.12 (30 pts) This chapter examines the two-state system but consider instead the infinite-state system consisting of N non-interacting particles. Each particle i can be in one of an infinite number of states designated by an integer, n; = 0,1,2, .... The energy of particle i is given by a = en; where e is a constant. Note: you may need the series sum Li-ori = a) If the particles are distinguishable, compute QIT,N) and A(T,N) for this...

  • Statistical_Mechanics 2 20 points) 2D ideal Fermi gas 24 Consider an ideal Fermi gas in 2D....

    Statistical_Mechanics 2 20 points) 2D ideal Fermi gas 24 Consider an ideal Fermi gas in 2D. It is contained in an area of dimensions L x L. The particle mass is m. (a) Find the density of states D(e) N/L2 (b) Find the Fermi energy as a function of the particle density n = (c) Find the total energy as a function of the Fermi energy ef. (d) Find the chemical potential u as a function of n and T....

  • [ 2 + 2 + 2 + 3 + 3 = 12 marks ] Question 5 (a) Briefly explain why we cannot find simultaneous eigenfunctions of Lt, L...

    [ 2 + 2 + 2 + 3 + 3 = 12 marks ] Question 5 (a) Briefly explain why we cannot find simultaneous eigenfunctions of Lt, L, and Lz. An electron in a hydrogen atom is in the n = 2 state. Ignoring spin, write down the list of possible quantum numbers {n, l, m} (b) For two qubits briefly explain, giving examples, the difference between a product state and an entangled state (c) Consider a system of identical...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT