Question

3) RLC Parallel Circu its: Differential Equations and Laplace U2 U1 TOPEN 0 TCLOSE 0 CL1 R1 0.15H C1 2E-8F 1 10E-3 2 J 10E-3

0 0
Add a comment Improve this question Transcribed image text
Answer #1

(2 t 2ол | >х Switeli s open leng -u aduck aut aj gh&t ckl tuis Ялtи 0u cloud K long te teady stak Сapacis Фрnde Qut as vссо-LTo(DX6) 1SK16 So.4sk oIs at vode e) +v!) (4a5-1)+ (8]| D158 O.4SX1000 vl) (4-)Cot x 4) V) 35 X1 015g +43D 25x156g+01s8+43U.

Add a comment
Know the answer?
Add Answer to:
3) RLC Parallel Circu its: Differential Equations and Laplace U2 U1 TOPEN 0 TCLOSE 0 CL1 R1 0.15H C1 2E-8F 1 10E-3 2 J...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Only need the last question 5 thanks! 3) RLC Parallel Circuits: Differential Equations and Laplace U2...

    Only need the last question 5 thanks! 3) RLC Parallel Circuits: Differential Equations and Laplace U2 U1 TOPEN 0 TCLOSE 0 L1 R1 0.15H C1 2E-8F 11 10E-3 2 10E-3 At t 0, U1 closes and U2 opens. 3.1: What is the intial (t-0+) current through the capacitor? What is the initial (t=0+) voltage across the capacitor? 3.2: What is the DC steady state current though the capacitor ast goes to infinity? 3.3: Find the current through the CAPACITOR as...

  • 4) RLC parallel circuits R1 R2 500 1E-2 1E-8 U2 1500 In the above circuit, the...

    4) RLC parallel circuits R1 R2 500 1E-2 1E-8 U2 1500 In the above circuit, the source turns on at t-0 with a voltage of 10V. Additionally, switch U1 is closed and switch U2 is open. At 15E-6 s switch U1 opens and switch U2 closes. The source also tuns off at 15E-6 s a. Use Laplace analysis to determine the voltage across the capacitor as a function of time for 0<t< 15E-6 (s) b. Use Laplace analysis to determine...

  • 2) RLC series circuits R1 1m 2 1E-6 V1 C1 1E-12 TR = Ở TF 0...

    2) RLC series circuits R1 1m 2 1E-6 V1 C1 1E-12 TR = Ở TF 0 PW = 1 PER = 2 In the above circuit, the voltage source is 5V for t<0 and 10V for t>0 2.1: Draw the s-domain equivalent circuit. Include the intial conditions in your s-domain circuit. Label your component values using symbolic notation (eg. sL1). 2.2: Using impedances, determine the transfer function for the voltage across C1. Use symbolic numbers in your expression. 2.3: Using...

  • 3) RLC Series Circuits R2 20k R3 ww 10k R1 ww 3k L1 2E-3 R5 R4...

    3) RLC Series Circuits R2 20k R3 ww 10k R1 ww 3k L1 2E-3 R5 R4 4k TD 8k TR TF 0 PW = PER 2 C1 2E-9 In the above circuit, the initial conditions are zero and the source can be considered a step function, 5u(t) 3.1: Determine and draw the simplified circuit schematic. (Hint: Thevenin equivalent with inductor and capacitor as a load...and yes, two (or more) components can be a load!) 3.2: What is the initial (t...

  • 1) (40 pts total) Solving and order ODE using Laplace Transforms: Consider a series RLC circuit...

    1) (40 pts total) Solving and order ODE using Laplace Transforms: Consider a series RLC circuit with resistor R, inductor L, and a capacitor C in series. The same current i(t) flows through R, L, and C. The voltage source v(t) is removed at t=0, but current continues to flow through the circuit for some time. We wish to find the natural response of this series RLC circuit, and find an equation for i(t). Using KVL and differentiating the equation...

  • 1. Use Laplace Transforms to determine the function modeling the current in an RLC circuit with L 10 Henries, R 20 ohms...

    1. Use Laplace Transforms to determine the function modeling the current in an RLC circuit with L 10 Henries, R 20 ohms, C = 0.02 Farads, the initial charge is Q(0) = 0, the initial current is I(0) = 0, there is an electromotive force forcing the RLC circuit via the voltage function E(t) letting the current alternate naturally through the circuit. Use the fact the differential 10 sin (t), nd then, at t = 2T seconds, the battery is...

  • do not use s domain method ,use only differential equation 3. In the circuit shown, switch 1 has been closed for a long time before it is opened at t 0, and switch 2 has been opened for a long time b...

    do not use s domain method ,use only differential equation 3. In the circuit shown, switch 1 has been closed for a long time before it is opened at t 0, and switch 2 has been opened for a long time before it is closed at t = 0. SW2 sw, 0.5Ω R2 1(2 A, 20 A i(t) 0.5 H a. Find the initial voltage v(O)- Vo across the capacitor and initial current through the inductor (0) lo at t...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT