Question

Following are the alternative chair conformations for trans-2-methylcyclohexanamine: NH2 NH2 CHз CH3 A Using the data for AG

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Soution MANu Gifven NH CH3 CH3 ca) Ani boh te functfonal Arous hüsd confoymaton axfal pacon Conformation. equaBa pation both-59-24 AGo 8.3 KJ 2X AG kJ 16.6 mouw b) The relation An tree bun efbbs Enurgy and rae C0dant AG eRT 8314 J e 3 K 10oB 900 A 006A Bェ Feren-tege OF B /.006A _- 1006- fIA }.006HA Q01X d.0061A OS013(00 B 50. 3 -50 13

Add a comment
Know the answer?
Add Answer to:
Following are the alternative chair conformations for trans-2-methylcyclohexanamine: NH2 NH2 CHз CH3 A Using the data...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Following are the alternative chair conformations for trans-1,4-dimethylcyclohexane: . Using the data for ΔG for monosubstituted...

    Following are the alternative chair conformations for trans-1,4-dimethylcyclohexane: . Using the data for ΔG for monosubstituted cyclohexanes at room temperature (25ºC) and the representative value* for the gauche interaction of two equatorially positioned substituents in the 1,2-position: a) Calculate the difference in the Gibbs free energy between the second and first conformation including the algebraic sign. kJ/mol b) Given your value in (a), calculate the percent of the chair, indicated as B, presented in an equilibrium mixture of the conformers...

  • Hello I have a question. Following are the alternative chair conformations for trans-2-bromocyclohexanamine: . Using the...

    Hello I have a question. Following are the alternative chair conformations for trans-2-bromocyclohexanamine: . Using the data for ΔG for monosubstituted cyclohexanes at room temperature (25ºC) and the representative value* for the gauche interaction of two equatorially positioned substituents in the 1,2-position: a) Calculate the difference in the Gibbs free energy between the second and first conformation including the algebraic sign. kJ/mol b) Given your value in (a), calculate the percent of the chair, indicated as B, presented in an...

  • On a separate sheet of paper, draw the two alternative chair conformations for the product formed by the addition of bro...

    On a separate sheet of paper, draw the two alternative chair conformations for the product formed by the addition of bromine to 4-tert-butylcyclohexene. The Gibbs free-energy differences between equatorial and axial substituents on a cyclohexane ring are 21 kJ/mol for tert-butyl, and 2.3 kJ/mol for bromine. Calculate the ratio of the two observed products at 46.0 °C using the following equation: The gas constant, R, is 8.314 J/K·mol. (Enter your answer to two significant figures.) Ratio: ____ to 1 Major...

  • On a separate sheet of paper, draw the two alternative chair conformations for the product formed...

    On a separate sheet of paper, draw the two alternative chair conformations for the product formed by the addition of bromine to 4-tert-butylcyclohexene. The Gibbs free-energy differences between equatorial and axial substituents on a cyclohexane ring are 21 kJ/mol for tert-butyl, and 2.3 kJ/mol for bromine. Calculate the ratio of the two observed products at 34.0 °C using the following equation: AG° = – RT In Keg The gas constant, R, is 8.314 J/K mol. (Enter your answer to two...

  • Strain Energy Increments Strain Energy for Alkanes Interaction / Compound kJ/mol kcal/mol H: Heclipsing 4.0 1.0 H: CH3...

    Strain Energy Increments Strain Energy for Alkanes Interaction / Compound kJ/mol kcal/mol H: Heclipsing 4.0 1.0 H: CH3 eclipsing 5.8 1.4 CH3 : CHз eclipsing 11.0 2.6 gauche butane 3.8 0.9 cyclopropane 27.5 115 cyclobutane 110 26.3 cyclopentane 26.0 6.2 cycloheptane 26.2 6.3 cyclooctane 40.5 9.7 Ln Axial Strain Energies for Monosubstituted Cyclohexanesa,b This table gives the sum of the values for the 1,3 diaxial interactions of the substituent with two hydrogen atoms. Substituent(solvent) К/mol kcal/mol -CНз 7,3 1,7 -CH-CHз...

  • Strain Energy Increments Strain Energy for Alkanes Interaction/Compound kJ/mol kcal/ 4.0 H: Heclipsing 1.0 H: CH3...

    Strain Energy Increments Strain Energy for Alkanes Interaction/Compound kJ/mol kcal/ 4.0 H: Heclipsing 1.0 H: CH3 eclipsing 5.8 1.4 CH3 : CH3 eclipsing 11.0 2.6 gauche butane 3.8 0.9 cyclopropane 115 27.5 cyclobutane 110 26.3 cyclopentane 26.0 6.2 6.3 cycloheptane 26.2 cyclooctane 40.5 9.7 Axial Strain Energies for Monosubstituted Cyclohexanesab This table gives the sum of the values for the 1,3 diaxial interactions of the substituent with two hydrogen atoms. kJ/mol kcal/mol Substituent(solvent) -CH3 1.7 7.3 CH2CH3 7.5 1.8 -CH(CH3)2...

  • Using the table below, calculate the difference in energy between a) the lowest energy conformations of...

    Using the table below, calculate the difference in energy between a) the lowest energy conformations of cis- and trans-1,2-dimethylcyclohexane. b) the highest and lowest energy conformations of methyl cyclohexane, trans-1,2-dimethylcyclohexane and cis-1,3-dimethylcyclohexane Type of Strain Interaction Associated Energy Eclipsing of a pair of H's 4kj/mol Eclipsing of a H and a CH3 group 6kj/mol Eclipsing of a pair of CH3 groups 11kj/mol Gauche (60) Interactin between CH3 Groups 3.8 kj/mol 1,3 CH3 to H Interaction on Cyclohexane Chair 3.8kj/mol 1,3...

  • References button, Strain Energy Increments) to calculate the energy difference between the two chair conformations of...

    References button, Strain Energy Increments) to calculate the energy difference between the two chair conformations of the compound below. b. Specify substituent positions (axial or equatorial) in the more stable chair. c. Estimate the percent of the more stable chair at equilibrium at 25°C. (To determine the percent of the more stable chair at equilibrium, fir calculate Keaq, and then use this value to find the percentage.) CH3 CH3 Answers: a. The energy difference is 4 b. In the more...

  • a. Use strain energy increments in the OWL Table Reference (see References button, Strain Energy Increments) to calcula...

    a. Use strain energy increments in the OWL Table Reference (see References button, Strain Energy Increments) to calculate the energy difference between the two chair conformations of the compound below. b. Specify substituent positions axial or equatorial) in the more stable chair. c. Estimate the percent of the more stable chair at equilibrium at 25°C. (To determine the percent of the more stable chair at equilibrium, first calculate Keq, and then use this value to find the percentage.) A CH3...

  • a. Use strain energy increments in the OWL Table Reference (see References button, Strain Energy Increments)...

    a. Use strain energy increments in the OWL Table Reference (see References button, Strain Energy Increments) to calculate the energy difference between the two chair conformations of the compound below. b. Specify substituent positions (axial or equatorial) in the more stable chair. c. Estimate the percent of the more stable chair at equilibrium at 25°C. (To determine the percent of the more stable chair at equilibrium, first calculate Keq, and then use this value to find the percentage.) OH H3C...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT