Question

Let V, W and X be vector spaces. Let T: V -> W and S : W -> X be isomorphisms. Prove that SoT : V -+ X is an isomorphism.

Please answer me fully with the details. Thanks!

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Given w and X are vector spaces T: v W and S: W-x are isvnorphisms an isomorphis. To pre that SoT: V x Lit V; w, X Such taatfor evey vechor eX ter exists a vectsy VeV Such that 0T () .SaT: V x is ento. et a,9R, ,ev SOT ( =s(T(a, ] =(a,TlaT( Tis an i

Add a comment
Know the answer?
Add Answer to:
Please answer me fully with the details. Thanks! Let V, W and X be vector spaces....
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Please answer me fully with the details. Thanks! Let V and W be vector spaces, let B = (j,...,Tn) be a basis of V, and...

    Please answer me fully with the details. Thanks! Let V and W be vector spaces, let B = (j,...,Tn) be a basis of V, and let C = (Wj,..., Wn) be any list of vectors in W. (1) Prove that there is a unique linear transformation T : V -> W such that T(V;) i E 1,... ,n} (2) Prove that if C is a basis of W, then the linear transformation T : V -> W from part (a)...

  • Please give answer with the details. Thanks a lot! Let T: V-W be a linear transformation between vector spaces V and W...

    Please give answer with the details. Thanks a lot! Let T: V-W be a linear transformation between vector spaces V and W (1) Prove that if T is injective (one-to-one) and {vi,.. ., vm) is a linearly independent subset of V the n {T(6),…,T(ền)} is a linearly independent subset of W (2) Prove that if the image of any linearly independent subset of V is linearly independent then Tis injective. (3) Suppose that {b1,... bkbk+1,. . . ,b,) is a...

  • Let V and W be two vector spaces over R and T:V + W be a...

    Let V and W be two vector spaces over R and T:V + W be a linear transformation. We call a linear map S: W → V a generalized inverse of T if To SOT = T and SoTo S = S. If T is an isomorphism, show that T-1 is the unique generalized inverse of T.

  • Q9 11 Points Let V and W be two vector spaces over R and T:V +...

    Q9 11 Points Let V and W be two vector spaces over R and T:V + W be a linear transformation. We call a linear map S:W + V a generalized inverse of Tif To SoT = T and SoTo S=S. Q9.1 3 Points If T is an isomorphism, show that T-1 is the unique generalized inverse of T. Please select file(s) Select file(s) Save Answer Q9.2 4 Points If S is a generalized inverse of T show that V...

  • Q9 11 Points Let V and W be two vector spaces over R and T:V +...

    Q9 11 Points Let V and W be two vector spaces over R and T:V + W be a linear transformation. We call a linear map S: W+V a generalized inverse of Tif To SoT = T and Soto S=S. 09.1 3 Points If T is an isomorphism, show that T-1 is the unique generalized inverse of T. Please select file(s) Select file(s) Save Answer Q9.2 4 Points If S is a generalized inverse of T show that V =...

  • Please answer me fully with the details. Thanks! True of False? Justify yo ur answer. —D т. If {ii, .., in} is a linear...

    Please answer me fully with the details. Thanks! True of False? Justify yo ur answer. —D т. If {ii, .., in} is a linearly independent subset of (1) Let V bea vector spacе, аnd let dim(V) V. then n < т. (2) Let V and W be vector spaces, and suppose that T : V -+ W is a linear transformation. If there are vectors i, 2, ..., Tj in V such that the vectors T(),T(T2),...,T(vj) span W, then the...

  • Let V and W be two vector spaces over R and T:V + W be a...

    Let V and W be two vector spaces over R and T:V + W be a linear transformation. We call a linear map S: W → V a generalized inverse of T if To SOT = T and SoTo S = S. If V and W are finite dimensional, show that there exists a generalized inverse of T.

  • Let V and W be two vector spaces over R and T:V + W be a...

    Let V and W be two vector spaces over R and T:V + W be a linear transformation. We call a linear map S:W → V a generalized inverse of T if To SoT=T and SoToS = S. If V and W are finite dimensional, show that there exists a generalized inverse of T.

  • Q9 11 Points Let V and W be two vector spaces over R and T:V +...

    Q9 11 Points Let V and W be two vector spaces over R and T:V + W be a linear transformation. We call a linear map S: W → V a generalized inverse of Tif To SoT=T and SoTo S = S. Q9.3 4 Points If V and W are finite dimensional, show that there exists a generalized inverse of T. Please select file(s) Select file(s) Save Answer

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT