Question

A stopped pipe is closed at one end and open at the other end. The frequency...

A stopped pipe is closed at one end and open at the other end. The frequency of the fundamental standing wave for the air in the pipe is 300 hz. What is the frequency of the next higher frequency standing wave?

Answer: 900

Please explain why

0 0
Add a comment Improve this question Transcribed image text
Answer #1

solution As the formula for the frequenies of nth overtone or (2n+15th harmonic for a Pipe which is Closed at one end and ope

Add a comment
Know the answer?
Add Answer to:
A stopped pipe is closed at one end and open at the other end. The frequency...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • explain please *Question 160: Resonant Frequencies A piece of pipe is closed at one end and...

    explain please *Question 160: Resonant Frequencies A piece of pipe is closed at one end and open at the other. The standing wave with the lowest frequency (the fundamental) occurs at frequency 100 Hz. What is the frequency of the first overtone (the next highest standing wave frequency)? Select one: a. 200 Hz b. 150 Hz c. No other standing waves are possible in a pipe open at one end only d. 67 Hz e. 300 Hz The correct answer...

  • The fundamental of an organ pipe that is closed at one end and open at the...

    The fundamental of an organ pipe that is closed at one end and open at the other end is 265.6 Hz (middle C). The second harmonic of an organ pipe that is open at both ends has the same frequency. Part A What is the length of the pipe that is closed at one end and open at the other end? PO AJÄ„ O O ? Submit Request Answer Part B What is the length of the pipe that is...

  • Part A: A certain organ pipe, open at both ends, produces a fundamental frequency of 300...

    Part A: A certain organ pipe, open at both ends, produces a fundamental frequency of 300 Hz in air. If the pipe is filled with helium at the same temperature, what fundamental frequency fHe will it produce? Take the molar mass of air to be 28.8 g/mol and the molar mass of helium to be 4.00 g/mol. I calculated this correctly to be 879 Hz, but I am not sure about the next part. Now consider a pipe that is...

  • A 146-cm-long pipe is stopped at one end. Near the open end, there is a loudspeaker...

    A 146-cm-long pipe is stopped at one end. Near the open end, there is a loudspeaker that is driven by an audio oscillator whose frequency can be varied from 10.0 to 4700 Hz. (Take the speed of sound to be 343 m/s.) (a) What is the lowest frequency of the oscillator that will produce resonance within the tube?   Hz (b) What is the highest frequency that will produce resonance?   Hz (c) How many different frequencies of the oscillator will produce...

  • A 5m long pipe filled with air is closed on one end and open on the...

    A 5m long pipe filled with air is closed on one end and open on the other. You are walking your dog near the pipe when he decides to bark inside of it, with is traveling at 344m/s. a. Find the fundamental frequency for the bark in the pipe. b. Find the fundamental wavelength. c. Find the wavelength and frequency for the next 2 resonant frequencies.

  • A 1.65 m long pipe is closed on one end and open on the other end....

    A 1.65 m long pipe is closed on one end and open on the other end. What is its 5th harmonic frequency? Enter your answer in Hz.

  • A certain organ pipe, open at both ends, produces a fundamental frequency of 290 Hz in...

    A certain organ pipe, open at both ends, produces a fundamental frequency of 290 Hz in air. If the pipe is filled with helium at the same temperature, what fundamental frequency f_He will it produce? Take the molar mass of air to be 28.8 g/mol and the molar mass of helium to be 4.00 g/mol Express your answer in hertz. Now consider a pipe that is stopped (i.e., closed at one end) but still has a fundamental frequency of 290...

  • How do I solve? A closed pipe creates a fundamental frequency of 125 Hz What is...

    How do I solve? A closed pipe creates a fundamental frequency of 125 Hz What is the next higher frequency that will create a standing wave in the pipe? (Speed of sound 343 m/s) (Unit Hz) os-aosg Acellus Corporation. All Rights Renerved

  • Pipe A is open at both ends and has length LA. Pipe B is closed at...

    Pipe A is open at both ends and has length LA. Pipe B is closed at one end and open at the other and has length LB. When both pipes produce sound in their second overtones, the result is a beat frequency of 2.5 Hz.    a. Make a careful sketch of the standing wave pattern for the air displacement for each pipe. Next to each sketch write the wavelength for each pipe in terms of the pipe lengths LA...

  • Pipe A is open at both ends and has length LA. Pipe B is closed at...

    Pipe A is open at both ends and has length LA. Pipe B is closed at one end and open at the other and has length LB. When both pipes produce sound in their second overtones, the result is a beat frequency of 2.5 Hz. a. Make a careful sketch of the standing wave pattern for the air displacement for each pipe. Next to each sketch, write the wavelength for each pipe in terms of the pipe lengths LA and...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT