Question

Q7M.6 Assume that the 1+z) and -z) states for an elec- tron in a magnetic field are energy eigenvectors with ener- gies E and

0 0
Add a comment Improve this question Transcribed image text
Answer #1

gèneu data ! Assume that the Hz) and l-z) States for 1 elebrors in a magnetic field. an |plossa P2K4l+ z1² <Y/P> P2 (4) 놈 Pro

Add a comment
Know the answer?
Add Answer to:
Q7M.6 Assume that the 1+z) and -z) states for an elec- tron in a magnetic field...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Consider an electron in a uniform magnetic field along the z direction. A measurement shows that...

    Consider an electron in a uniform magnetic field along the z direction. A measurement shows that the spin is along the negative x direction at -0. a. Find the eigenvector describing the initial spin state. 5. 0 -1 b. Write the Hamiltonian as a 2x2 matrix by starting with H =-7S-Band taking the field B in the z- direction. Find the energy eigenvalues and eigenvectors. Solve for | Ψ(t) using these eigenvalues, eigenvectors, and the initial condition from part a....

  • qm 2019.3 3. The Hamiltonian corresponding to the magnetic interaction of a spin 1/2 particle with...

    qm 2019.3 3. The Hamiltonian corresponding to the magnetic interaction of a spin 1/2 particle with charge e and mass m in a magnetic field B is À eB B. Ŝ, m where Ŝ are the spin angular momentum operators. You should make use of expres- sions for the spin operators that are given at the end of the question. (i) Write down the energy eigenvalue equation for this particle in a field directed along the y axis, i.e. B...

  • A spin-1 particle interacts with an external magnetic field B = B. The interaction Hamiltonian for the system is H = gB-S, where S-Si + Sỳ + SE is the spin operator. (Ignore all degrees of freedom ot...

    A spin-1 particle interacts with an external magnetic field B = B. The interaction Hamiltonian for the system is H = gB-S, where S-Si + Sỳ + SE is the spin operator. (Ignore all degrees of freedom other than spin.) (a) Find the spin matrices in the basis of the S. S eigenstates, |s, m)) . (Hint: Use the ladder operators, S -S, iS, and S_-S-iS,, and show first that s_ | 1,0-ћ /2 | 1.-1)) . Then use these...

  • Consider the state of a spin-1/2 particle 14) = v1o (31+z) + i] – z)) where...

    Consider the state of a spin-1/2 particle 14) = v1o (31+z) + i] – z)) where | z) are the eigenstates of the operator of the spin z-component $z. 1. Show that [V) is properly normalized, i.e. (W14) = 1. 2. Calculate the probability that a measurement of $x = 6x yields 3. Calculate the expectation value (Šx) for the state 14) and its dispersion ASx = V(@z) – ($()2. 4. Assume that the spin is placed in the magnetic...

  • Consider one dimensional lattice of N particles having a spin of 1 /2 with an associated magnetic...

    Consider one dimensional lattice of N particles having a spin of 1 /2 with an associated magnetic moment μ The spins are kept in a magnetic field with magnetic induction B along the z direction. The spin can point either up, t, or down, , relative to the z axis. The energy of particle with spin down is e B and that of particle with spin up is ε--B. We assume that the system is isolated from. its environment so...

  • The behavior of a spin- particle in a uniform magnetic field in the z-direction, , with...

    The behavior of a spin- particle in a uniform magnetic field in the z-direction, , with the Hamiltonian You found that the expectation value of the spin vector undergoes Larmor precession about the z axis. In this sense, we can view it as an analogue to a rotating coin, choosing the eigenstate with eigenvalue to represent heads and the eigenstate with eigenvalue to represent tails. Under time-evolution in the magnetic field, these eigenstates will “rotate” between each other. (a) Suppose...

  • ) cos(0/2) + -2) state is placed in a magnetic field with strength B pointing 4....

    ) cos(0/2) + -2) state is placed in a magnetic field with strength B pointing 4. Larmor precession: an electron prepared in the V(t 0 sin(0/2)e in the a-direction. Calculate the time evolution of the electron's spin state. In addition calculate the time evolution of (S), S and (S ). (2 points)

  • Intro to Quantum Mechanics Problem: An electron under the influence of a uniform magnetic field By...

    Intro to Quantum Mechanics Problem: An electron under the influence of a uniform magnetic field By in the y-direction has its spin initially (at 0) pointing in the positive x-direction. That is, it is in an eigenstate of S with eigenvalue +,S h. The Hamiltonian H--μ . B-γ By Sy consists of the interaction of the magnetic dipole moment μ due to spin and the magnetic field B. Show that the probability of finding the electron with its spin pointing...

  • 4. When an external magnetic field B is applied, a "spin-1" ion has 3 magnetic states...

    4. When an external magnetic field B is applied, a "spin-1" ion has 3 magnetic states with energies given Em=aBm, m=-1,0,1, where a is a constant of order a few times the Bohr magneton up = en/(2m). (Note: the notation here is quite different from that of Kittel & Kroemer who use "m" for the elementary magnetic moment which we have denoted a. In our terminology, m=ms is an integer quantum number: m=-1 labels the "spin down" state, m=0 labels...

  • The energy of a magnetic moment in a magnetic field is . A certain paramagnetic salt contai...

    The energy of a magnetic moment in a magnetic field is . A certain paramagnetic salt contains 1025 magnetic moments per m3. Each one has a value , due to the atom's spin. As the spin is 1/2, there only are two possible states and the magnetic moments can be parallel or antiparallel to the field. Each magnetic moment belongs to one distinguishable atom. A 1 cm3 sample of this salt is placed in a electromagnet producing a uniform magnetic...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT