Question

The two mathematical models that apply to the standing waves on strings system are the relationship...

The two mathematical models that apply to the standing waves on strings system are the relationship between wave speed, wavelength, and frequency

and equation 1 in the handout relating the wave speed to the tension and linear density in the string. If you create a graph of wavelength as a function of string tension, you should expect a trend line close to _____.

a. exponential function

b. a power function of order 2

c.  power function of order 0.5

0 0
Add a comment Improve this question Transcribed image text
Answer #1

V =   √ T/μ \lambda =V/f = (√ T/μ )/f so \lambda is a function of square root that power function 0.5 option c

Add a comment
Know the answer?
Add Answer to:
The two mathematical models that apply to the standing waves on strings system are the relationship...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • 1,2 and 3 I. EXPERIMENT 1.10: STANDING WAVES ON STRINGS A. Abstract Waves on a string...

    1,2 and 3 I. EXPERIMENT 1.10: STANDING WAVES ON STRINGS A. Abstract Waves on a string under tension and fixed at both ends result in well-defined modes of vibration with a spectrum of frequencies given by the formula below B. Formulas ē In=n (), n = 1,2,3,... v=JI where fn is the frequency of the nth standing wave mode on the string of length L, linear mass density , and under tension T, and v is the wave speed on...

  • Question 4 to 11 plz Dr? Standing Waves on a String Physics Topics If necessary, review...

    Question 4 to 11 plz Dr? Standing Waves on a String Physics Topics If necessary, review the following topics and relevant textbook sections from Serway / Jewett "Physics for Scientists and Engineers", 9th Ed. • Mathematics of Traveling Waves (Serway 17.2) • Speed of Waves on a String (Serway 17.3) • Superposition of Waves (Serway 18.1) • Standing Waves on a string (Serway 18.2, 18.3) Introduction Imagine two sinusoidal traveling waves with equal amplitudes and frequencies moving in opposite directions....

  • Need Table F and how you do the calculations I. EXPERIMENT 1.10: STANDING WAVES ON STRINGS...

    Need Table F and how you do the calculations I. EXPERIMENT 1.10: STANDING WAVES ON STRINGS A. Abstract Waves on a string under tension and fixed at both ends result in well-defined modes of vibration with a spectrum of frequencies given by the formula below B. Formulas fn=n (*), n= 1, 2, 3,... v= T where fr is the frequency of the nth standing wave mode on the string of length L, linear mass density y, and under tension T,...

  • The drawing shows two transverse waves traveling on two strings. The linear density of each string...

    The drawing shows two transverse waves traveling on two strings. The linear density of each string is 0.0583 kg/m, and the tension is provided by a 34.0-N block that is hanging from the string. Determine the speed of the wave in part (a) and part (b) of the drawing. Also, can you show work too.

  • Two sinusoidal waves traveling in opposite directions interfere to produce a standing wave with the following...

    Two sinusoidal waves traveling in opposite directions interfere to produce a standing wave with the following wave function, where x is in meters and t is in seconds. y = (3.00 m) sin(0.900x) cos(6000) Determine the wavelength of the interfering waves. m What is the frequency of the interfering waves? Hz Find the speed of the interfering waves. m/s

  • Two sinusoidal waves traveling in opposite directions interfere to produce a standing wave with the following...

    Two sinusoidal waves traveling in opposite directions interfere to produce a standing wave with the following wave function, where x is in meters and t is in seconds. y = (3.00 m) sin(0.800x) cos(600t) Determine the wavelength of the interfering waves. m What is the frequency of the interfering waves? Hz Find the speed of the interfering waves. m/s

  • 1. How many wavelengths are shown in the standing wave pattern pictured below? 2. If the...

    1. How many wavelengths are shown in the standing wave pattern pictured below? 2. If the standing wave in question 1 is created using a string with linear mass density of 0.0003 kg/m and under tension of 5 N, what is the speed of the wave? 3. If the length of the string in questions 1 and 2 is 1 m, what is the frequency of the wave? 4. A standing wave is produced in a hollow tube as shown...

  • Im looking for help on number 2! Thanks 1.0 Use X 2L/m and fo v/Am m...

    Im looking for help on number 2! Thanks 1.0 Use X 2L/m and fo v/Am m (2) to solve these problems. For strings, the relationship fm 2V is also true. mn 2L 0.5! (w) 0.0 WWW -0.51 1. What is (a) the wavelength and (2) the mode of the standing wave in the figure of a vibrating string below? -1.01 -1.5 2 3 4 5 < (m) (w) 3. A string has a linear density of u 2.0 x 10-3...

  • no 1 and 2 Homework 3A: Standing Waves 1. Two waves propagate in one direction on...

    no 1 and 2 Homework 3A: Standing Waves 1. Two waves propagate in one direction on a stretched rope. The frequency of the waves is 120 Hz. Both have the same amplitude of 4 cm and wavelength of 0.04 m. (a) Determine the amplitude of the resultant wave if the two original waves differ in phase by Tm/3? (b) What is the phase difference between the two waves if the amplitude of the resultant wave is 0.05 cm? 2. Two...

  • You generate a standing wave on a 1-m long string, fixed on both ends, by forcing...

    You generate a standing wave on a 1-m long string, fixed on both ends, by forcing it to vibrate at 100 Hz. When doing so, the standing wave has a wavelength of 1 m. According to the wave equation, v=Af, the speed of the wave along the string is 100 m/s. Suppose the forcing frequency is doubled to 200 Hz, without changing the length, tension or ends of the string. What is the new wavelength and wave speed? A. The...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT