Question

Two uniform spheres of identical mass and radius are placed on inclined planes at the same...

Two uniform spheres of identical mass and radius are placed on inclined planes at the same height h and inclination angle θ. One plane is rough and causes one sphere to roll down the plane; the other is frictionless, and so the sphere on it slides down the incline.

Find the ratio of the kinetic energies of the two spheres at the bottom of the incline:   \frac{K_{slide}}{K_{roll}}.

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Case Rough Inchine Evegy Theorem mg thrcion mahto+o = kl ent Uing wore AK h mgh Krou V Case2 Smoote Incline Usine wok-E naty

Add a comment
Know the answer?
Add Answer to:
Two uniform spheres of identical mass and radius are placed on inclined planes at the same...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Two uniform spheres of identical mass and radius are placed on inclined planes at the same...

    Two uniform spheres of identical mass and radius are placed on inclined planes at the same height h and inclination angle θ. One plane is rough and causes one sphere to roll down the plane; the other is frictionless, and so the sphere on it slides down the incline. (a) Find the ratio of the kinetic energies of the two spheres at the bottom of the incline:   . (b) Find the ratio of their speeds at the base of the...

  • Two spheres of equal mass M and equal radius R roll down an inclined plane as...

    Two spheres of equal mass M and equal radius R roll down an inclined plane as shown in the figure. One sphere is solid and the other is a hollow spherical shell. The plane makes an angle ? with respect to the horizontal. The spheres are released simultaneously from rest at the top of the inclined plane and they each roll down the incline without slipping. The total distance each sphere rolls down the ramp (the hypotenuse) is d. There...

  • A hollow sphere and uniform sphere of the same mass m and radius R roll down...

    A hollow sphere and uniform sphere of the same mass m and radius R roll down an inclined plane from the same height H without slipping (Figure 9-59). Each is moving horizontally as it leaves the ramp. When the spheres | hit the ground, the range of the hollow sphere is L. Find the range L' of the uniform sphere. FIGURE Uniform Hollow sphere sphere

  • A box slides down an inclined plane with an acceleration that is precisely two-fifths what it...

    A box slides down an inclined plane with an acceleration that is precisely two-fifths what it would have been if the slide had been frictionless. Calculate the angle of the incline if the coefficient of kinetic friction of the rough incline is 0.29.

  • Q10 A hollow sphere and a hoop of the same mass and radius are released at...

    Q10 A hollow sphere and a hoop of the same mass and radius are released at the same time at the top of an inclined plane. If both are uniform, (1) Which one reaches the bottom of the incline first if there is no slipping? (2) A uniform hollow sphere of mass 120 kg and radius 1.7 m starts from rest and rolls without slipping dow an inclined plane of vertical height 5.3 m. What is the translational speed of...

  • 6.A solid sphere, a solid cylinder, and a hoop all have the same mass and radius....

    6.A solid sphere, a solid cylinder, and a hoop all have the same mass and radius. Each are sent down identical inclined planes starting from rest. Their kinetic energies at the bottom of the incline are Ksphere, Kcylinder, and Khoop. Which of the following is true? a.Ksphere > Kcylinder b.Khoop > Ksphere c.Khoop > Kcylinder d.Kcylinder > Khoop e.No answer above is correct. The answer is e, but could someone please explain why

  • A solid sphere of radius R and mass 10.0kg is placed on an incline plane of...

    A solid sphere of radius R and mass 10.0kg is placed on an incline plane of variable angle. The coefficients of static and kinetic friction are μs=0.29 and μk=0.14. (a) What is the minimum angle such that the sphere slides down the plane?   o (b) What is the frictional force at this angle?   N (c) If the angle of the incline plane is half of that in part (a) what are the acceleration of the sphere and the force of...

  • A solid sphere of radius R and mass 10.0kg is placed on an incline plane of...

    A solid sphere of radius R and mass 10.0kg is placed on an incline plane of variable angle. The coefficients of static and kinetic friction are μs=0.29 and μk=0.14. (a) What is the minimum angle such that the sphere slides down the plane?   o (b) What is the frictional force at this angle?   N (c) If the angle of the incline plane is half of that in part (a) what are the acceleration of the sphere and the force of...

  • Ex: Friction and inclined plane. A box of mass 10 kilograms is placed on an inclined...

    Ex: Friction and inclined plane. A box of mass 10 kilograms is placed on an inclined plane so that it is at rest. The coefficients of static and kinetic friction between the surfaces of the plane and the box Are 0.4 and 0.3 respectively. a) For what value of the angle of inclination of the plane the box will start sliding down the plane ? b) Find out its acceleration as it slides down the plane. We were unable to...

  • Consider a uniform disk of radius R and mass m sliding down an incline making an...

    Consider a uniform disk of radius R and mass m sliding down an incline making an angle θ with respect to the horizontal. The coefficient of kinetic friction between the disk and the surface is μk. The torque due to friction causes the disk to rotate as it slides down the incline. a) Compute the linear acceleration of the disk as it slides down the incline. b) Compute the angular acceleration of the disk as it slides down the incline....

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT