Question

Two hemispherical surfaces, 1 and 2, of respective radii r1 and r2, are centered at a...

Two hemispherical surfaces, 1 and 2, of respective radii r1 and r2, are centered at a point charge and are facing each other so that their edges define an annular ring (surface 3), as shown. The field at position r⃗  due to the point charge is:

E⃗ (r⃗ )=Cr2r^

where C is a constant proportional to the charge, r=∣∣r⃗ ∣∣, and r^=r⃗ /r is the unit vector in the radial direction.

a- What is the electric flux Φ3 through the annular ring, surface 3?

b- What is the electric flux Φ1 through surface 1?

c-What is the electric flux Φ2 passing outward through surface 2?

0 0
Add a comment Improve this question Transcribed image text
Answer #1

1) What is the electric flux Φ3 through the annular ring, surface 3

Φ3 = 0
2) What is the electric flux Φ1 through surface 1

Φ1 = C

3) What is the electric flux Φ2 passing outward through surface 2

Φ2 = C

Add a comment
Know the answer?
Add Answer to:
Two hemispherical surfaces, 1 and 2, of respective radii r1 and r2, are centered at a...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Consider a point charge q located at the point az (see Fig. 1). The point charge...

    Consider a point charge q located at the point az (see Fig. 1). The point charge is surrounded by a spherical surface of radius R centered at the origin which is cut off at theV2R/2 plane resulting in the open surface shown in Fig. 1 (turnover page). We shall refer to this surface as B (a) Using spherical polar coordinates (r.. o) state the radial component of the electric field E, from q everywhere on B (b) Calculate the electric...

  • Gauss's Law in 3, 2, and 1 Dimension

    Gauss's Law in 3, 2, and 1 Dimension Gauss's law relates the electric flux \(\Phi_{E}\) through a closed surface to the total charge \(q_{\text {end }}\) enclosed by the surface:Part ADetermine the magnitude \(E(r)\) by applying Gauss's law.Express \(E(r)\) in terms of some or all of the variables/constants \(q, \tau\), and \(\epsilon_{0}\).Part BBy symmetry, the electric field must point radially outward from the wire at each point; that is, the field lines lie in planes perpendicular to the wire. In solving for the magnitude of...

  • Two insulating spherical shells are shown below.Shell one, centered at (xy) - (0, 0) and radius...

    Two insulating spherical shells are shown below.Shell one, centered at (xy) - (0, 0) and radius R, has a uniform surface charge density of n Shell two, radius 4R and also centered on the origin, has a uniform surface charge density of 7, What is the magnitude of the electric field E at the origin (0,0)? 3R O 0 (nk,th/36) Ο η2/96, The solid circles in the figure below are two point charges which each have a charge of magnitude...

  • Help with question 2 1. what is the electric field at the centre (r = 0)...

    Help with question 2 1. what is the electric field at the centre (r = 0) of a hemisphere bounded by r = a, 0 < θ < π/2 and 0 < φ < 2m, that carries a uniform volumetric charge density P3(The charges are distributed in this hemispherical 3D space. Use spherical coordinates due to the hemispherical geometry.) Consider some charges that are lined up in a straight line. This line of charge carries a uniform linear charge density....

  • Consider a cylindrical capacitor like that shown in Fig. 24.6. Let d = rb − ra...

    Consider a cylindrical capacitor like that shown in Fig. 24.6. Let d = rb − ra be the spacing between the inner and outer conductors. (a) Let the radii of the two conductors be only slightly different, so that d << ra. Show that the result derived in Example 24.4 (Section 24.1) for the capacitance of a cylindrical capacitor then reduces to Eq. (24.2), the equation for the capacitance of a parallel-plate capacitor, with A being the surface area of...

  • A long non conducting cylinder has a charge density p=ar where a = 4.96 C/m^4 and...

    A long non conducting cylinder has a charge density p=ar where a = 4.96 C/m^4 and r is in meters. Concentric around it is a hollow This is part of the previous page. I need help with 26, 28, 29. 12 cm 11.7 em 16.7 cm Find the total electrie flux through a spbere centered at the point charge and having radius vacuum is 88S42 × 10-12C/N·m" What is the electric field at 2 cm from theRSa The value of...

  • Question 1. (a) Write down the differential form of Maxwell's equations in matter for the dynamic...

    Question 1. (a) Write down the differential form of Maxwell's equations in matter for the dynamic case (where the electric and magnetic field can change with time), in the presence of free charges and currents. Describe all physical quantities and constants used. [10] (6) (b) Write down the integral form of Ampere's law in vacuum for the static (non time- dependent) case. Using Stokes' theorem, derive the differential form of Ampere's law. [4] (c) Two charges 91= 5 uC and...

  • summarizr the followung info and write them in your own words and break them into different...

    summarizr the followung info and write them in your own words and break them into different key points.   6.5 Metering Chamber: 6.5.1 The minimum size of the metering box is governed by the metering area required to obtain a representative test area for the specimen (see 7.2) and for maintenance of reasonable test accuracy. For example, for specimens incorporating air spaces or stud spaces, the metering area shall span an integral number of spaces (see 5.5). The depth of...

  • summatize the following info and break them into differeng key points. write them in yojr own...

    summatize the following info and break them into differeng key points. write them in yojr own words   apartus 6.1 Introduction—The design of a successful hot box appa- ratus is influenced by many factors. Before beginning the design of an apparatus meeting this standard, the designer shall review the discussion on the limitations and accuracy, Section 13, discussions of the energy flows in a hot box, Annex A2, the metering box wall loss flow, Annex A3, and flanking loss, Annex...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT