Question

Two disks are rotating about the same axis. Disk A has a moment of inertia of 4.45 kg.m2 and an angular velocity of +4.87 rad
0 0
Add a comment Improve this question Transcribed image text
Answer #1

Given :- I, +4.45 kg.ma. w,54187 rad|s Iz = ? W2 = -7.28 radla If = I + Iz wuf = -3.59 rad Is By Conservation of angulare mo

Add a comment
Know the answer?
Add Answer to:
Two disks are rotating about the same axis. Disk A has a moment of inertia of...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Two disks are rotating about the same axis. Disk A has a moment of inertia of...

    Two disks are rotating about the same axis. Disk A has a moment of inertia of 9.20 kg·m2 and an angular velocity of +9.96 rad/s. Disk B is rotating with an angular velocity of -8.43 rad/s. The two disks are then linked together without the aid of any external torques, so that they rotate as a single unit with an angular velocity of -3.59 rad/s. The axis of rotation for this unit is the same as that for the separate...

  • Two disks are rotating about the same axis. Disk A has a moment of inertia of...

    Two disks are rotating about the same axis. Disk A has a moment of inertia of 3.3 kg · m2 and an angular velocity of +7.4 rad/s. Disk B is rotating with an angular velocity of -9.3 rad/s. The two disks are then linked together without the aid of any external torques, so that they rotate as a single unit with an angular velocity of -2.5 rad/s. The axis of rotation for this unit is the same as that for...

  • Two disks are rotating about the same axis. Disk A has a moment of inertia of...

    Two disks are rotating about the same axis. Disk A has a moment of inertia of 4.50 kg·m2 and an angular velocity of +1.17 rad/s. Disk B is rotating with an angular velocity of -6.93 rad/s. The two disks are then linked together without the aid of any external torques, so that they rotate as a single unit with an angular velocity of -3.80 rad/s. The axis of rotation for this unit is the same as that for the separate...

  • please help me it's urgent 1. A disk whose moment of inertia is 2 kgm2 is...

    please help me it's urgent 1. A disk whose moment of inertia is 2 kgm2 is rotating at 120 rad/s. This disk is pressed against a similar disk (with the same inertia) that is able to rotate freely, but initially at rest. The two disks stick together and rotate as a unit. (a) Find the final angular velocity of the combination. (b) How much energy was lost to friction when the disks were brought together?

  • A uniform disk with mass M and radius R is rotating about an axis through its center-of-mass.

    A uniform disk with mass M and radius R is rotating about an axis through its center-of-mass. The axis is perpendicular to the disk. The moment of inertial for the disk with a central axis is I MR2. Two non-rotating smaller disks, each with mass M2 and radius R/4, are glued on the original disk as shown in the figure. (a) Show that the ratio of the moments of inertia is given by  I'/I = 35/16, where I' is the moment...

  • Figure 12 shows two disks A & B rotating in the same direction. Disk A has...

    Figure 12 shows two disks A & B rotating in the same direction. Disk A has a mass of 2.00 kg, a radius of 0.200 m, and an initial angular speed of 50.0 rad/s. Disk B has a mass of 4.00 kg, a radius of 0.100 m, and an initial angular speed of 200 rad/s. The disks are pushed toward each other with equal and opposite forces acting along the common axis. Find the common angular speed after the disks...

  • In the diagram, disk 1 has a moment of inertia of 3.2 kg · m2 and...

    In the diagram, disk 1 has a moment of inertia of 3.2 kg · m2 and is rotating in the counterclockwise direction with an angular velocity of 7.3 rad/s about a frictionless rod passing through its center. A second disk rotating clockwise with an angular velocity of 8.9 rad/s falls from above onto disk 1. The two then rotate as one in the clockwise direction with an angular velocity of 1.8 rad/s. Determine the moment of inertia, in kg ·...

  • In a demonstration, a bicycle wheel with moment of inertia 0.37 kg.m2 is spun up to...

    In a demonstration, a bicycle wheel with moment of inertia 0.37 kg.m2 is spun up to 14 rad/s, rotating about a vertical axis. A student holds the wheel while sitting on a rotatable stool. The student and the stool are initially stationary and have a moment of inertia equal to l 3.60 kg.m2. If the student turns the bicycle wheel over so its axis point in the opposite direction, with what angular velocity will the student and stool rotate? Assume...

  • Two disks are mounted (like a merry-go-round) on low-friction bearings on the same axle and can...

    Two disks are mounted (like a merry-go-round) on low-friction bearings on the same axle and can be brought together so that they couple and rotate as one unit. The first disk, with rotational inertia 3.25 kg m2 about its central axis, is set spinning counterclockwise (which may be taken as the positive direction) at 181 rev/min. The second disk, with rotational inertia 7.95 kg.m2 about its central axis, is set spinning counterclockwise at 879 rev/min. They then couple together. (a)...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT