Question

2) A steam power plant operates on an ideal regenerative rankine cycle with superheated steam leaving the boiler, entering th



2) A steam power plant operates on an ideal regenerative rankine cycle with superheated steam leaving the boiler, entering th
2) A steam power plant operates on an ideal regenerative rankine cycle with superheated steam leaving the boiler, entering the turbine at 10 mPa,600C. X fraction of steam is extracted from the turbine at 0.6 mPa pressure for the high pressure open feedwater heater. Then x fraction more of steam is extracted from the turbine at 0.2 mPa pressure for the low pressure open feedwater heater . The condenser pressure in the cycle is 5 kPa. The mass flow rate of the steam (m) circulating in the cycle is 27kg/sec. a)Draw the sketch and the corresponding t-s diagram. b)Calculate the x fraction of steam extracted from the turbine at 0.2 mPa pressure for the low pressure open feedwater heater. c)calculate the Y fraction of steam extracted later from the turbine at 0.2 mPa pressure for the low pressure open feedwater heater. d)Calculate qH added to the system at the boiler ha e)calculate qL extracted from the cycle at condenser f)calculate the net power output (Wn) of the power plant 8) calculate the thermal efficiency of the power plant
2) A steam power plant operates on an ideal regenerative rankine cycle with superheated steam leaving the boiler, entering the turbine at 10 mPa, 600C. X fraction of steam is extracted from the turbine at 0.6 mPa pressure for the high pressure open feedwater heater Then x fraction more of steam is extracted from the turbine at 0.2 mPa pressure for the low pressure open feedwater heater. The condenser pressure in the cycle is 5 kPa.The mass flOw rate of the steam (m) circulating in the cycle is 27kg/sec a) Draw the sketch and the corresponding t-s diagram b)Calculate the x fraction of steam extracted from the turbine at 0.2 mPa pressure for the low pressure open feedwater heater. c) calculate the Y fraction of steam extracted later from the turbine at 0.2 mPa pressure for the low pressure open feedwater heater d) Calculate qH added to the system at the boiler e) calculate qL extracted from the cycle at condenser f)calculate the net power output (Wn) of the power plant g)calculate the thermal efficiency of the power plant
0 0
Add a comment Improve this question Transcribed image text
Answer #1

80luhon! 10 M P O.6MPaX 1-X o604Peloe 2 SKPa (1-x- (x-X- Properhes at diferemt stat points dsom steam table h,htat scpa=137.2=1SOS-13 504.7)ナ0.42 670 38 ks I ato-6M Pa Ps= o.6 Pa VsVEat o 6MPa- 1.10113 3) k =CI101X103)xC10,000-600 10-35 k3119 680.73b.07133ニメ 670.38-SOS13 X=hs-ha 2821-8-S0S 13 Eneray balamce For teed watr heatr at o-2MPeg 2- ehg1-X-2)h 2 Chs-h2) -X (h9-h2)

Add a comment
Answer #2
Q3: A steam power plant operates on an ideal regenerative Rankine cycle with two open feedwater heaters. Steam enters the turbine at 10 MPa and 600°C and exhausts to the condenser at 5 kPa. Steam is extracted from the turbine at 0.6 and 0.2 MPa. Water leaves both feedwater heaters as a saturated liquid. The mass flow rate of steam through the boiler is 22 kg/s. Show the cycle on a T-s diagram, and determine (a) the net power output of the power plant and (b) the thermal efficiency of the cycle.
answered by: anonymous
Add a comment
Know the answer?
Add Answer to:
2) A steam power plant operates on an ideal regenerative rankine cycle with superheated steam leaving...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • 1. A Steam Power Plant that operates on an ideal regenerative Rankine Cycle with an open...

    1. A Steam Power Plant that operates on an ideal regenerative Rankine Cycle with an open feedwater heater is considered. The turbine inlet conditions are 6 MPa, 450 C. The regeneration pressure is 0.4 MPa. The condenser pressure is 20 kPa. a) Draw the T-s diagram, and the sketch of the steam power plant. b) Calculate the low pressure pump work. c) Calculate the high pressure pump work. d) Calculate the fraction of the steam extracted from the turbine for...

  • thermodynamic 2. A ste am power plant operates on an ideal regenerative Rankine cycle. Steam enters...

    thermodynamic 2. A ste am power plant operates on an ideal regenerative Rankine cycle. Steam enters the turbine at 10 MPa and 500°C and is condensed in the condenser at 10 kPa. Steam is extracted from the turbine at 0.5 MPa to heat the feedwater in an open feedwater heater. Water leaves the feedwa ter heater as a saturated liquid. The plant has a net power output of 150 MW. Show the cycle on a T-s dingram, and determine (a)...

  • Consider a steam power plant that operates on the ideal regenerative Rankine cycle with a closed...

    Consider a steam power plant that operates on the ideal regenerative Rankine cycle with a closed feedwater heater as shown in the figure. The plant maintains the turbine inlet at 3000 kPa and 3508C; and operates the condenser at 20 kPa. Steam is extracted at 1000 kPa to serve the closed feedwater heater, which discharges into the condenser after being throttled to condenser pressure. Calculate the work produced by the turbine, the work consumed by the pump, and the heat...

  • Consider a steam power plant that operates on an ideal regenerative rankine cycle

    Consider a steam power plant that operates on an ideal regenerative rankine cycle. Steam enters turbine at 6 MPa and 450 deg and is condensed in the condenser at 20 kPa. Bleed Steam is extracted from the turbine at 0.4 MPa to heat the boiler feed-water in an open feed-water heater, water leaves the feed water heater as a saturated liquid. Construct a property table giving the pressure, enthalpy and phase for all the state points identified in the cycle...

  • a) A steam power plant operates on an ideal reheat-regenerative Rankine cycle. Steam enters the high-pressure...

    a) A steam power plant operates on an ideal reheat-regenerative Rankine cycle. Steam enters the high-pressure turbine (HPT) at a pressure of 10 MPa and temperature of 550°C. The steam expands through the HPT stage to a pressure of 0.6 MPa. Some of the steam at the end of the expansion process in HPT is extracted for a regeneration process in a closed-type feedwater heater. The steam leaves the heater as a saturated liquid and then is throttled to the...

  • 10-55 Consider a steam power plant that operates on the ideal regenerative Rankine cycle with a...

    10-55 Consider a steam power plant that operates on the ideal regenerative Rankine cycle with a closed feedwater heater as shown in the figure. The plant maintains the turbine inlet at 3000 kPa and 350°C and operates the condenser at 20 kPa. Steam is extracted at 1000 kPa to serve the closed feedwater heater, which discharges into the condenser after being throt- tled to condenser pressure. Calculate the work produced by the turbine, the work consumed by the pump, and...

  • 10-48 Consider a steam power plant that operates on the ideal regenerative Rankine cycle with a...

    10-48 Consider a steam power plant that operates on the ideal regenerative Rankine cycle with a closed feedwater heater as shown in the figure. The plant maintains the turbine inlet at 3000 kPa and 350°C; and operates the condenser at 20 kPa. Steam is extracted at 1000 kPa to serve the closed feedwater heater, which discharges into the condenser after being throttled to condenser pressure. Calculate the work pro- duced by the turbine, the work consumed by the pump, and...

  • SP-25 Consider a regenerative steam power plant with one open feedwater heater and one closed fee...

    SP-25 Consider a regenerative steam power plant with one open feedwater heater and one closed feedwater heater. Superheated steam enters the turbine with a mass flow rate of 120 kg/s at 16 MPa and 560°C (State 1). Some fraction of the steam is extracted at 40 bar (State 2) and is supplied to the closed feedwater heater. The remaining steam expands to a pressure of 3 bar (State 3), another fraction is extracted at this pressure, and is supplied to...

  • A power plant operates on a regenerative vapor power cycle with one open feedwater heater. Steam...

    A power plant operates on a regenerative vapor power cycle with one open feedwater heater. Steam enters the first turbine stage at 12 MPa, 560°C and expands to 1 MPa, where some of the steam is extracted and diverted to the open feedwater heater operating at 1 MPa. The remaining steam expands through the second turbine stage to the condenser pressure of 6 kPa. Saturated liquid exits the open feedwater heater at 1 MPa. The net power output for the...

  • A power plant operates on a regenerative vapor power cycle with one open feedwater heater. Steam...

    A power plant operates on a regenerative vapor power cycle with one open feedwater heater. Steam enters the first turbine stage at 12 MPa, 560°C and expands to 1 MPa, where some of the steam is extracted and diverted to the open feedwater heater operating at 1 MPa. The remaining steam expands through the second turbine stage to the condenser pressure of 28 kPa. Saturated liquid exits the open feedwater heater at 1 MPa. The net power output for the...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT