Question

Masses my and m2, traveling with velocities +v; and -u respectively have a head on collision. After the collision, mass mi is
0 0
Add a comment Improve this question Transcribed image text
Answer #1

solution - mass of object be m, & m2 & its velocity vi &- vi? Befse collision}. - mass of object be m, & m» & its velocit② Completely together inelastic collision after collision & means these particle stick is maximum. lost of kinetic energy 7 Cm2 By law of conservation of momentom. mui- m₂ Vi = m xo + mauf » 04 (mm) Vi -- 0 2 By law of conservation of momentom kineti

Add a comment
Know the answer?
Add Answer to:
Masses my and m2, traveling with velocities +v; and -u respectively have a head on collision....
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Two point masses mu and my with initial velocities vi and vu collide in a fully...

    Two point masses mu and my with initial velocities vi and vu collide in a fully elastic collision. Calculate the final (after collision) velocities vi and V, of mı and in the lab frame. Enter your responses in terms of some or all of 'm_1' for mı, 'm_2' for m2, 'V_1' for vi, 'V_2" for v2. 력 Vy = Compare the kinetic energies and their changes in an elastic collision. The KE in the lab frame equals the KE in...

  • 4. Consider two particles of masses my and m2 and positions rı and r2 respectively. Suppose...

    4. Consider two particles of masses my and m2 and positions rı and r2 respectively. Suppose m2 exerts a force F on mı. Suppose further that the two particles are in a uniform gravitational field g. (a) Write down the equations of motion for the two particles. (b) Show that the equations of motion can be written as MR = Mg ur = F where M is the total mass, R is the centre of mass, he is the reduced...

  • Consider two masses sliding across a frictionless surface about to undergo a head-on collision as shown...

    Consider two masses sliding across a frictionless surface about to undergo a head-on collision as shown in the figure. The first mass (m1 = 3 kg) is travelling to the right with a speed of V1 = 8 m/s. The speed of the second mass (m2 = 5 kg) is unknown. After the masses collide, m1 rebounds moving off at a speed of v = 2 m/s in the opposite direction, while m2 is motionless. a)(10 pts.) At what velocity,...

  • Consider two masses sliding across a frictionless surface about to undergo a head-on collision as shown...

    Consider two masses sliding across a frictionless surface about to undergo a head-on collision as shown in the figure. The first mass (m1 =3 kg) is travelling to the right with a speed of v1 = 8 m/s. The speed of the second mass (m2 = 5 kg) is unknown. After the masses collide, ma rebounds moving off at a speed of v = 2 m/s in the opposite direction, while mz is motionless. a)(10 pts.) At what velocity, v2...

  • The figure below show three masses m=1.6 kg, m2=3.0 kg, and m3=4.6 kg which undergo two...

    The figure below show three masses m=1.6 kg, m2=3.0 kg, and m3=4.6 kg which undergo two successive collisions. The first collision between mi, which has an initial velocity v=6.9 m/s, and m2 (which is initially at rest) is completely inelastic. The second collision between the combined mass mi+m2 and m3 (which is initially at rest) is elastic. What is the velocity of mg after the second collision? V 2 3 Select one 04.08 m/s O 2.40 m/s 2.64 m/s O...

  • The figure below show three masses m1=1.1 kg, m2=2.8 kg, and m3=4.3 kg which undergo two...

    The figure below show three masses m1=1.1 kg, m2=2.8 kg, and m3=4.3 kg which undergo two successive collisions. The first collision between m1, which has an initial velocity v=8.2 m/s, and m2 (which is initially at rest) is completely inelastic. The second collision between the combined mass m1+m2 and m3 (which is initially at rest) is elastic. What is the velocity of m3 after the second collision? The figure below show three masses m1=1.1 kg, m2=2.8 kg, and m3=4.3 kg...

  • Problem 4 10 marks Two solid spheres of total masses my and my respectively collide such...

    Problem 4 10 marks Two solid spheres of total masses my and my respectively collide such that at the instant of impact the x axis passes through the centers C1 and C2 of the spheres. The collision is perfectly elastic (that is, (ví - ví). î = -(V1 – V2) · î). Find their velocities after impact (ví and vź) in terms of their velocities before impact (v1 and V2 or V1, V2,01 and 62). m2

  • The figure below show three masses m1=1.7 kg, m2=2.9 kg, and m3=4.5 kg which undergo two...

    The figure below show three masses m1=1.7 kg, m2=2.9 kg, and m3=4.5 kg which undergo two successive collisions. The first collision between m1, which has an initial velocity v=7.9 m/s, and m2 (which is initially at rest) is completely inelastic. The second collision between the combined mass m1+m2 and m3 (which is initially at rest) is elastic. What is the velocity of m3 after the second collision? (use figure in picture, but answer question above) The figure below show three...

  • The figure below show three masses m1=1.6 kg, m2=3.0 kg, and m3=4.6 kg which undergo two...

    The figure below show three masses m1=1.6 kg, m2=3.0 kg, and m3=4.6 kg which undergo two successive collisions. The first collision between m1, which has an initial velocity v=6.9 m/s, and m2 (which is initially at rest) is completely inelastic. The second collision between the combined mass m1+m2 and m3 (which is initially at rest) is elastic. What is the velocity of m3 after the second collision? V 1 2 co

  • The figure below show three masses m1=1.5 kg, m2=2.7 kg, and m3=4.6 kg which undergo two...

    The figure below show three masses m1=1.5 kg, m2=2.7 kg, and m3=4.6 kg which undergo two successive collisions. The first collision between m1, which has an initial velocity v=8.6 m/s, and m2 (which is initially at rest) is completely inelastic. The second collision between the combined mass m1+m2 and m3 (which is initially at rest) is elastic. What is the velocity of m3 after the second collision? V 1 2 co

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT