Question

Unsymmetrical ethers can be made by the Williamson synthesis, in which an alkoxide ion reacts with...

Unsymmetrical ethers can be made by the Williamson synthesis, in which an alkoxide ion reacts with an alkyl bromide. Draw the structure of the alkoxide and the alkyl bromide needed to produce 2-ethoxy-2-methylpropane (a.k.a t-butyl ethyl ether), shown below. Show charges where appropriate.Image for Unsymmetrical ethers can be made by the Williamson synthesis, in which an alkoxide ion reacts with an alkyl br


1 0
Add a comment Improve this question Transcribed image text
✔ Recommended Answer
Answer #1
Concepts and reason

Williamson ether synthesis is a reaction between an alkoxide and a primary alkyl halide by mechanism to produce both symmetrical and unsymmetrical ether, where alkoxide acts as a nucleophile.

Fundamentals

General reaction mechanism:

In mechanism reactivity order of the alkyl halide is

.

Character of alkoxide is less important in this reaction.

Ans:

Add a comment
Know the answer?
Add Answer to:
Unsymmetrical ethers can be made by the Williamson synthesis, in which an alkoxide ion reacts with...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Similar Homework Help Questions
  • Unsymmetrical ethers can be made by the Williamson synthesis, in which an alkoxide ion reacts with...

    Unsymmetrical ethers can be made by the Williamson synthesis, in which an alkoxide ion reacts with an alkyl bromide. Draw the structure of the alkoxide and the alkyl bromide needed to produce 2-ethoxy-2-methylpropane (a.k.a t-butyl ethyl ether), shown below. Show charges where appropriate. Unsymmetrical ethers can be made by the Williamson synthesis, in which an alkoxide ion reacts with an alkyl bromide. Draw the structure of the alkoxide and the alkyl bromide needed to produce 2-ethoxy-2-methylpropane (a.k.a t-butyl ethyl ether),...

  • Unsymmetrical ethers can be made by the Williamson synthesis, in which an alkoxide ion reacts with...

    Unsymmetrical ethers can be made by the Williamson synthesis, in which an alkoxide ion reacts with an alkyl bromide. Draw the structure of the alkoxide and the alkyl bromide needed to produce 2-ethoxy-2-methylpropane (a.k.a t-butyl ethyl ether), shown below. Show charges where appropriate. alkoxide alkyl bromide ether + Br

  • Unsymmetrical ethers can be made by the Williamson synthesis, in which an alkoxide ion reacts with...

    Unsymmetrical ethers can be made by the Williamson synthesis, in which an alkoxide ion reacts with an alkyl bromide. Draw the structure of the alkoxide and the alkyl bromide needed to produce 2-ethoxy-2-methylpropane (a.k.a t-butyl ethyl ether), shown below. Show charges where appropriate.

  • Unsymmetrical ethers can be made by the Williamson synthesis, in which an alkoxide ion reacts with...

    Unsymmetrical ethers can be made by the Williamson synthesis, in which an alkoxide ion reacts with an alkyl bromide. Draw the structure of the alkoxide and the alkyl bromide needed to produce 2-ethoxy-2-methylpropane (a.k.a t-butyl ethyl ether), shown below. Show charges where appropriate.

  • Unsymmetrical ethers can be made by the Williamson synthesis, in which an alkoxide ion reacts with...

    Unsymmetrical ethers can be made by the Williamson synthesis, in which an alkoxide ion reacts with an alkyl bromide. Draw the structure of the alkoxide and the alkyl bromide needed to produce 2-ethoxy-2-methylpropane (a.k.a t-butyl ethyl ether), shown below. Show charges where appropriate.

  • Draw the structure Unsymmetrical ethers can be made by the Williamson synthesis, in which an alkoxide...

    Draw the structure Unsymmetrical ethers can be made by the Williamson synthesis, in which an alkoxide ion reacts with an alkyl bromide. Draw the structure of the alkoxide and the alkyl bromide needed to produce 2-ethoxy-2-methylpropane (a.k.a t-butyl ethyl ether), shown below. Show charges where appropriate. alkoxide alkyl bromide ether Br

  • 1. Unsymmetrical ethers can be made by the Williamson synthesis, in which an alkoxide ion reacts...

    1. Unsymmetrical ethers can be made by the Williamson synthesis, in which an alkoxide ion reacts with an alkyl bromide. Draw the structure of the alkoxide and the alkyl bromide needed to produce 2-ethoxy-2-methylpropane (a.k.a t-butyl ethyl ether), shown below. Show charges where appropriate. 2. What nucleophile could be used to react with butyl iodide to prepare the following compound?

  • Draw the structure of the alkoxide and the alkyl bromide needed to produce...

    Unsymmetrical ethers can be made by the Williamson synthesis, in which an alkoxide ion reacts with an alkyl bromide. Draw the structure of the alkoxide and thealkyl bromide needed to produce 2-ethoxy-2-methylpropane (a.k.a. t-butyl ethyl ether), shown below. Show charges where appropriate.

  • ORGANIC

    1. Unsymmetrical ethers can be made by the Williamson synthesis, in which an alkoxide ion reacts with an alkyl bromide. Draw the structure of the alkoxide and the alkyl bromide needed to produce 2-ethoxy-2-methylpropane (a.k.a t-butyl ethyl ether), shown below. Show charges where appropriate.HINT:The reaction involves an SN2 attack of the alkoxide on the alkyl bromide, displacing the bromide ion.R1O- + R2Br --------> R1-0-R2 + Br-What are the alkyl groups found in the ether? One alkyl group will come from...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT